Sub‐6 nm Fully Ordered L10‐Pt–Ni–Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain

材料科学 电催化剂 可逆氢电极 催化作用 双功能 矫顽力 纳米颗粒 化学工程 过渡金属 纳米技术 电化学 物理化学 电极 化学 有机化学 物理 工程类 参比电极 凝聚态物理
作者
Tanyuan Wang,Jiashun Liang,Zhonglong Zhao,Shenzhou Li,Gang Lü,Zhengcai Xia,Chao Wang,Jiahuan Luo,Jiantao Han,Cheng Ma,Yunhui Huang,Qing Li
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:9 (17) 被引量:162
标识
DOI:10.1002/aenm.201803771
摘要

Abstract Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically ordered L 1 0 ‐Pt–Ni–Co NPs are synthesized for the first time by employing a bifunctional core/shell Pt/NiCoO x precursor, which could provide abundant O‐vacancies for facilitated Pt/Ni/Co atom diffusion and prevent NP sintering during thermal annealing. Further, Co doping is found to remarkably enhance the ferromagnetism (room temperature coercivity reaching 2.1 kOe) and the consequent chemical ordering of L 1 0 ‐Pt–Ni NPs. As a result, the best‐performing carbon supported L 1 0 ‐PtNi 0.8 Co 0.2 catalyst reveals a half‐wave potential ( E 1/2 ) of 0.951 V versus reversible hydrogen electrode in 0.1 m HClO 4 with 23‐times enhancement in mass activity over the commercial Pt/C catalyst along with much improved stability. Density functional theory (DFT) calculations suggest that the L 1 0 ‐PtNi 0.8 Co 0.2 core could tune the surface strain of the Pt shell toward optimized Pt–O binding energy and facilitated reaction rate, thereby improving the ORR electrocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助咩咩采纳,获得10
刚刚
漫天白沙完成签到 ,获得积分10
刚刚
tangzanwayne完成签到 ,获得积分10
1秒前
wanna发布了新的文献求助10
1秒前
1秒前
Wendell发布了新的文献求助10
2秒前
2秒前
项阑悦完成签到,获得积分10
3秒前
无骨鸡爪不长胖完成签到,获得积分10
3秒前
3秒前
monned完成签到 ,获得积分10
4秒前
冉景平完成签到 ,获得积分10
4秒前
4秒前
嘻嘻发布了新的文献求助10
5秒前
领导范儿应助Refuel采纳,获得10
5秒前
义气青丝发布了新的文献求助10
7秒前
名不显时心不朽完成签到,获得积分10
8秒前
乐乐乐发布了新的文献求助10
9秒前
林灏泽完成签到,获得积分10
9秒前
11秒前
12秒前
wanci应助Refuel采纳,获得10
13秒前
Wendell完成签到,获得积分10
13秒前
14秒前
完美世界应助wjw采纳,获得10
14秒前
chai发布了新的文献求助10
15秒前
小鹿完成签到 ,获得积分10
15秒前
乐观若烟完成签到 ,获得积分10
16秒前
17秒前
艺涵完成签到,获得积分10
18秒前
核桃应助科研通管家采纳,获得30
19秒前
wanci应助科研通管家采纳,获得30
19秒前
田様应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得30
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
fighting应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
花笺发布了新的文献求助10
19秒前
19秒前
赘婿应助chai采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429