Heuristic-based optimal path planning for neurosurgical tumor ablation

烧蚀 启发式 路径(计算) 快速行进算法 计算机科学 运动规划 路径长度 神经外科 算法 医学 外科 人工智能 计算机网络 机器人 内科学 程序设计语言
作者
Ajeet Wankhede,Likhita Madiraju,Dipam Patel,Kevin Cleary,Chima Oluigbo,Reza Monfaredi
标识
DOI:10.1117/12.2512352
摘要

In brain tumor ablation procedures, imaging for path planning and tumor ablation are performed in two different sessions. Using pre-operative MR images, the neurosurgeon determines an optimal ablation path to maximize tumor ablation in a single path ablation while avoiding critical structures in the brain. After pre-operative path planning the patient undergoes brain surgery. Manual planning for brain tumor ablation is time-intensive. In addition, the preoperative images may not precisely match the intra-operative images due to brain shift after opening the skull. Surgeons sometimes therefore adjust the path planned during the surgery, which leads to increased anaesthesia and operation time. In this paper, a new heuristic-based search algorithm is introduced to find an optimal ablation path for brain tumors, that can be used both pre- and intra-operatively. The algorithm is intended to maximize the safe ablation region with a single path ablation. Given the tumor location, healthy tissue locations, and a random start point on the skull from medical images, our proposed algorithm computes all plausible entry points on the skull and then searches for different ablation paths that intersect with the tumor, avoids the critical structures, and finds the optimal path. We implemented Breadth First Search (BFS), Dijkstra, and our proposed heuristic based algorithms. In this paper we report the results of a comparative study for these methods in terms of the search space explored and required computation time to find an optimal ablation path.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的冷珍完成签到,获得积分10
刚刚
bjyx完成签到,获得积分10
刚刚
reck完成签到,获得积分10
1秒前
pharmstudent发布了新的文献求助30
1秒前
小田完成签到,获得积分10
1秒前
小喵发布了新的文献求助10
2秒前
FashionBoy应助毛毛哦啊采纳,获得10
2秒前
Lucas应助Chen采纳,获得10
3秒前
强健的蚂蚁完成签到,获得积分20
3秒前
小宇发布了新的文献求助10
3秒前
斜杠武完成签到,获得积分20
3秒前
4秒前
伞兵龙发布了新的文献求助10
4秒前
RC_Wang应助科研小民工采纳,获得10
4秒前
sanben完成签到,获得积分10
4秒前
4秒前
_蝴蝶小姐完成签到,获得积分10
5秒前
诗轩发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
迟大猫应助乐乱采纳,获得10
7秒前
万能图书馆应助派大星采纳,获得10
8秒前
FashionBoy应助娜行采纳,获得10
9秒前
9秒前
传奇3应助后知后觉采纳,获得10
10秒前
10秒前
10秒前
科研通AI2S应助Chem is try采纳,获得10
10秒前
11秒前
a方舟发布了新的文献求助10
11秒前
寒冷书竹发布了新的文献求助10
11秒前
11秒前
hhh发布了新的文献求助10
11秒前
顾矜应助富婆嘉嘉子采纳,获得10
11秒前
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672