Toward Portable Hybrid Surface Electromyography/A-Mode Ultrasound Sensing for Human–Machine Interface

肌电图 计算机科学 人工智能 接口(物质) 计算机视觉 语音识别 生物医学工程 模式识别(心理学) 工程类 物理医学与康复 医学 最大气泡压力法 气泡 并行计算
作者
Wei Xia,Yu Zhou,Xingchen Yang,Keshi He,Honghai Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:19 (13): 5219-5228 被引量:47
标识
DOI:10.1109/jsen.2019.2903532
摘要

It is evident that non-invasive muscle-based human-machine interface (HMI) has been the research focus of human-machine interaction. To improve the performance of muscle-based HMI, it is significantly important to obtain electrophysiological and morphological changes of muscle contraction. However, there is still lacking of solution to present electrophysiological and morphological information of the same muscle at the same time. Surface electromyography (sEMG) can reflect the electrical activity of functional muscle contraction and A-mode ultrasound (AUS) can monitor the morphological structure of active muscle, both in non-invasive manners. This paper proposes a portable hybrid sEMG/AUS system for HMI. The system consists of composite sensor armband and signal acquisition modules, where the former achieves arrangement of two kinds of sensors at the same muscle position and the latter enables the simultaneous acquisition of sEMG and AUS signals. The hardware evaluation experiment proves that the system can provide high-quality signals in respect to signalto-noise ratio (SNR) and time-frequency characteristics. Furthermore, the hand gesture recognition experiment validates the complementarity between sEMG-based and AUS-based HMI, since the recognition accuracy of hybrid sEMG/AUS feature is significantly improved by 4.85% (p = 0.0095) and 20.6% (p <; 0.0001) compared to the results of ultrasound features and sEMG features, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yumieer完成签到,获得积分10
1秒前
1秒前
zhq发布了新的文献求助10
2秒前
2秒前
领导范儿应助哈哈哈哈采纳,获得10
2秒前
顾矜应助Meng采纳,获得10
3秒前
soufle完成签到,获得积分10
3秒前
yan完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
英俊的铭应助开朗龙猫采纳,获得10
4秒前
5秒前
5秒前
qwe完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
7秒前
ily.发布了新的文献求助10
7秒前
欣喜亚男完成签到,获得积分10
7秒前
HHHHH发布了新的文献求助10
7秒前
雪夜003完成签到 ,获得积分10
8秒前
我是老大应助呆子采纳,获得10
8秒前
可爱大地关注了科研通微信公众号
8秒前
9秒前
淡淡的向雁完成签到,获得积分10
9秒前
Nemo发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
kk_汤齐完成签到,获得积分20
10秒前
11秒前
vicin完成签到,获得积分10
11秒前
无花果应助你们才来采纳,获得10
12秒前
科研通AI6应助Litesco采纳,获得10
12秒前
自由的飞发布了新的文献求助10
13秒前
haha发布了新的文献求助10
14秒前
刻苦鸭子发布了新的文献求助10
14秒前
ZhouZhou发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921