非线性系统
数学
有限元法
反向欧拉法
伽辽金法
规范(哲学)
间断伽辽金法
抛物型偏微分方程
应用数学
欧拉方程
数学分析
偏微分方程
物理
热力学
法学
量子力学
政治学
出处
期刊:Cornell University - arXiv
日期:2012-08-23
被引量:3
标识
DOI:10.48550/arxiv.1208.4698
摘要
This paper is concerned with the time-step condition of commonly-used linearized semi-implicit schemes for nonlinear parabolic PDEs with Galerkin finite element approximations. In particular, we study the time-dependent nonlinear Joule heating equations. We present optimal error estimates of the semi-implicit Euler scheme in both the $L^2$ norm and the $H^1$ norm without any time-step restriction. Theoretical analysis is based on a new splitting of the error and precise analysis of a corresponding time-discrete system. The method used in this paper can be applied to more general nonlinear parabolic systems and many other linearized (semi)-implicit time discretizations for which previous works often require certain restriction on the time-step size $\tau$.
科研通智能强力驱动
Strongly Powered by AbleSci AI