Predicting the co-evolution of event and Knowledge Graphs

计算机科学 嵌入 知识图 图形 事件(粒子物理) 利用 知识表示与推理 理论计算机科学 人工智能 机器学习 情报检索 计算机安全 量子力学 物理
作者
Cristóbal Esteban,Volker Tresp,Yinchong Yang,Stephan Baier,Denis Krompass
出处
期刊:International Conference on Information Fusion 卷期号:: 98-105 被引量:17
摘要

Knowledge graphs have evolved as flexible and powerful means for representing general world knowledge. Typical examples are DBpedia, Yago, or the Google Knowledge Graph, which all started off by representing information derived from Wikipedia and were then greatly expanded. In this paper we use the concept of a knowledge graph to present information about specific classes of entities, such as patients or users. The knowledge graph represents all that is known about the entities and their relationships and the goal is to integrate and exploit that information for prediction and decision support. In previous papers it was shown that embedding learning, a.k.a. representation learning, is capable of modelling large-scale semantic knowledge graphs, by exploiting information that describes the context of an entity in the knowledge graph. In Machine Learning we often map the knowledge graph to a tensor representation. Then we learn the latent representations of the entities that compose the tensor and use them to predict unobserved facts. However knowledge graphs represent the current status of the world and therefore they lack of a temporal dimension, which means we can only use them to predict facts about the present moment. In this paper we introduce an additional set of tensors that contain temporal information. Each of this event tensors contains all the events that occurred on a particular time step. Our goal will be to predict the events that will happen in future time steps, using for that task both dynamic information from the previous event tensors and static information that is stored in the knowledge graph. Therefore, this architecture allows us to fuse static and dynamic information to predict future events. We present experiments showing how this model performs well in multiple scenarios: medical data, a recommendation engine and sensor data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱夏岚完成签到,获得积分10
1秒前
zzzzd完成签到,获得积分10
2秒前
忧郁鸣凤发布了新的文献求助10
2秒前
是小志发布了新的文献求助10
2秒前
无花果应助开朗雨琴采纳,获得10
2秒前
3秒前
烟花应助小青柠采纳,获得10
3秒前
吴大师已经玩明白了完成签到,获得积分10
4秒前
4秒前
yufanhui应助饱满酸奶采纳,获得10
5秒前
岳小龙发布了新的文献求助10
6秒前
买桃子去发布了新的文献求助10
8秒前
diegomht完成签到,获得积分20
8秒前
9秒前
10秒前
奇妙淞发布了新的文献求助30
11秒前
Orange应助是小志采纳,获得10
11秒前
田田田完成签到,获得积分10
12秒前
嘀嘀哒哒完成签到,获得积分20
14秒前
14秒前
14秒前
HC完成签到 ,获得积分10
14秒前
情怀应助qichen采纳,获得10
14秒前
小青柠发布了新的文献求助10
15秒前
16秒前
ppz关注了科研通微信公众号
16秒前
cz完成签到,获得积分20
18秒前
18秒前
Xianhe发布了新的文献求助10
19秒前
kk发布了新的文献求助10
20秒前
20秒前
21秒前
小二郎应助AixGnad采纳,获得10
21秒前
23秒前
Nansen发布了新的文献求助10
23秒前
可爱的茈完成签到,获得积分10
23秒前
123发布了新的文献求助10
25秒前
CodeCraft应助奇妙淞采纳,获得10
26秒前
26秒前
bxj发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161247
求助须知:如何正确求助?哪些是违规求助? 2812712
关于积分的说明 7896285
捐赠科研通 2471547
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631084
版权声明 602112