A novel hybrid deep learning scheme for four-class motor imagery classification

计算机科学 人工智能 运动表象 卷积神经网络 深度学习 脑-机接口 模式识别(心理学) 人工神经网络 任务(项目管理) 脑电图 滤波器(信号处理) 信号(编程语言) 计算机视觉 精神科 经济 管理 程序设计语言 心理学
作者
Ruilong Zhang,Qun Zong,Liqian Dou,Xinyi Zhao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (6): 066004-066004 被引量:139
标识
DOI:10.1088/1741-2552/ab3471
摘要

Objective. Learning the structures and unknown correlations of a motor imagery electroencephalogram (MI-EEG) signal is important for its classification. It is also a major challenge to obtain good classification accuracy from the increased number of classes and increased variability from different people. In this study, a four-class MI task is investigated. Approach. An end-to-end novel hybrid deep learning scheme is developed to decode the MI task from EEG data. The proposed algorithm consists of two parts: a. A one-versus-rest filter bank common spatial pattern is adopted to preprocess and pre-extract the features of the four-class MI signal. b. A hybrid deep network based on the convolutional neural network and long-term short-term memory network is proposed to extract and learn the spatial and temporal features of the MI signal simultaneously. Main results. The main contribution of this paper is to propose a hybrid deep network framework to improve the classification accuracy of the four-class MI-EEG signal. The hybrid deep network is a subject-independent shared neural network, which means it can be trained by using the training data from all subjects to form one model. Significance. The classification performance obtained by the proposed algorithm on brain–computer interface (BCI) competition IV dataset 2a in terms of accuracy is 83% and Cohen's kappa value is 0.80. Finally, the shared hybrid deep network is evaluated by every subject respectively, and the experimental results illustrate that the shared neural network has satisfactory accuracy. Thus, the proposed algorithm could be of great interest for real-life BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Jiang发布了新的文献求助20
2秒前
檀宇亭完成签到,获得积分10
3秒前
Lemonal完成签到,获得积分10
3秒前
程程发布了新的文献求助10
3秒前
快点毕业发布了新的文献求助10
4秒前
爆米花应助红岸采纳,获得10
4秒前
4秒前
fafafa发布了新的文献求助10
5秒前
YXF发布了新的文献求助10
5秒前
失眠夏山发布了新的文献求助10
6秒前
MOMO完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
jerry发布了新的文献求助10
8秒前
赵小天完成签到,获得积分10
9秒前
深情安青应助fafafa采纳,获得10
11秒前
852应助YXF采纳,获得10
11秒前
CAT发布了新的文献求助10
11秒前
avaig完成签到,获得积分10
12秒前
Flynn发布了新的文献求助10
14秒前
14秒前
15秒前
充电宝应助无情慕卉采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
cl发布了新的文献求助10
18秒前
小周小周发布了新的文献求助20
18秒前
18秒前
刁俊辉完成签到,获得积分20
21秒前
魑魅魍魉发布了新的文献求助10
21秒前
yeah发布了新的文献求助10
21秒前
orixero应助mumu采纳,获得10
21秒前
22秒前
23秒前
Lucas应助赵小天采纳,获得10
23秒前
烟花应助努力学习ing采纳,获得10
24秒前
Fairy完成签到,获得积分10
25秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916