A novel hybrid deep learning scheme for four-class motor imagery classification

计算机科学 人工智能 运动表象 卷积神经网络 深度学习 脑-机接口 模式识别(心理学) 人工神经网络 任务(项目管理) 脑电图 滤波器(信号处理) 信号(编程语言) 计算机视觉 精神科 经济 管理 程序设计语言 心理学
作者
Ruilong Zhang,Qun Zong,Liqian Dou,Xinyi Zhao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:16 (6): 066004-066004 被引量:139
标识
DOI:10.1088/1741-2552/ab3471
摘要

Objective. Learning the structures and unknown correlations of a motor imagery electroencephalogram (MI-EEG) signal is important for its classification. It is also a major challenge to obtain good classification accuracy from the increased number of classes and increased variability from different people. In this study, a four-class MI task is investigated. Approach. An end-to-end novel hybrid deep learning scheme is developed to decode the MI task from EEG data. The proposed algorithm consists of two parts: a. A one-versus-rest filter bank common spatial pattern is adopted to preprocess and pre-extract the features of the four-class MI signal. b. A hybrid deep network based on the convolutional neural network and long-term short-term memory network is proposed to extract and learn the spatial and temporal features of the MI signal simultaneously. Main results. The main contribution of this paper is to propose a hybrid deep network framework to improve the classification accuracy of the four-class MI-EEG signal. The hybrid deep network is a subject-independent shared neural network, which means it can be trained by using the training data from all subjects to form one model. Significance. The classification performance obtained by the proposed algorithm on brain–computer interface (BCI) competition IV dataset 2a in terms of accuracy is 83% and Cohen's kappa value is 0.80. Finally, the shared hybrid deep network is evaluated by every subject respectively, and the experimental results illustrate that the shared neural network has satisfactory accuracy. Thus, the proposed algorithm could be of great interest for real-life BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
孤蚀月发布了新的文献求助10
刚刚
雯十七发布了新的文献求助10
1秒前
humblelucas发布了新的文献求助10
1秒前
2秒前
哎嘿应助科研小郭采纳,获得10
2秒前
TRz发布了新的文献求助10
3秒前
3秒前
牛马完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
crains完成签到 ,获得积分10
5秒前
bzp完成签到,获得积分10
5秒前
summy完成签到,获得积分10
5秒前
6秒前
wzgkeyantong发布了新的文献求助10
6秒前
叶绿体机智关注了科研通微信公众号
6秒前
Puokn发布了新的文献求助10
6秒前
7秒前
Nancy完成签到,获得积分10
7秒前
7秒前
8秒前
humblelucas完成签到,获得积分10
8秒前
kxmyt发布了新的文献求助10
9秒前
9秒前
123发布了新的文献求助10
9秒前
10秒前
田恬完成签到,获得积分10
10秒前
collapsar1完成签到,获得积分10
11秒前
酱攸完成签到,获得积分10
11秒前
乱叶新秋完成签到,获得积分10
12秒前
溦昼发布了新的文献求助10
13秒前
哭泣老三发布了新的文献求助10
13秒前
甜美的月饼完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
科研通AI2S应助11采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655