A novel deep multi-criteria collaborative filtering model for recommendation system

推荐系统 协同过滤 深度学习 计算机科学 人工智能 机器学习 人工神经网络 深层神经网络 冷启动(汽车) 数据挖掘 工程类 航空航天工程
作者
Nour Nassar,Assef Jafar,Yasser Rahhal
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:187: 104811-104811 被引量:141
标识
DOI:10.1016/j.knosys.2019.06.019
摘要

Recommender systems have been in existence everywhere with most of them using single ratings in prediction. However, multi-criteria predictions have been proved to be more accurate. Recommender systems have many techniques; collaborative filtering is one of the most commonly used. Deep learning has achieved impressive results in many domains such as text, voice, and computer vision. Lately, deep learning for recommender systems began to gain massive interest, and many recommendation models based on deep learning have been proposed. However, as far as we know, there is not yet any study which gathers multi-criteria recommendation and collaborative filtering with deep learning. In this work, we propose a novel multi-criteria collaborative filtering model based on deep learning. Our model contains two parts: in the first part, the model obtains the users and items’ features and uses them as an input to the criteria ratings deep neural network, which predicts the criteria ratings. Those criteria ratings constitute the input to the second part, which is the overall rating deep neural network and is used to predict the overall rating. Experiments on a real-world dataset demonstrate that our proposed model outperformed the other state-of-the-art methods, and this provides evidence pointing to the success of employing deep learning and multi-criteria in recommendation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LX完成签到,获得积分10
1秒前
wanci应助adai采纳,获得10
1秒前
Sew东坡完成签到,获得积分10
2秒前
Patrick发布了新的文献求助20
2秒前
科研通AI2S应助黎书禾采纳,获得10
2秒前
疯狂的灵发布了新的文献求助10
4秒前
Lucas应助wynn采纳,获得30
4秒前
4秒前
那些年完成签到 ,获得积分10
5秒前
丰知然应助HUAJIAO采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
asstman发布了新的文献求助10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
cocolu应助科研通管家采纳,获得50
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得30
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
aaaaaa完成签到,获得积分10
8秒前
8秒前
鱼儿应助柳致毓采纳,获得50
8秒前
道枢发布了新的文献求助10
8秒前
科研小郭发布了新的文献求助30
9秒前
9秒前
赘婿应助干净的夜云采纳,获得10
9秒前
YYYYYY完成签到,获得积分10
9秒前
9秒前
独爱小新发布了新的文献求助10
9秒前
SciGPT应助万步癫采纳,获得10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447376
求助须知:如何正确求助?哪些是违规求助? 3043281
关于积分的说明 8993087
捐赠科研通 2731551
什么是DOI,文献DOI怎么找? 1498269
科研通“疑难数据库(出版商)”最低求助积分说明 692755
邀请新用户注册赠送积分活动 690500