A novel deep multi-criteria collaborative filtering model for recommendation system

推荐系统 协同过滤 深度学习 计算机科学 人工智能 机器学习 人工神经网络 深层神经网络 冷启动(汽车) 数据挖掘 工程类 航空航天工程
作者
Nour Nassar,Assef Jafar,Yasser Rahhal
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:187: 104811-104811 被引量:141
标识
DOI:10.1016/j.knosys.2019.06.019
摘要

Recommender systems have been in existence everywhere with most of them using single ratings in prediction. However, multi-criteria predictions have been proved to be more accurate. Recommender systems have many techniques; collaborative filtering is one of the most commonly used. Deep learning has achieved impressive results in many domains such as text, voice, and computer vision. Lately, deep learning for recommender systems began to gain massive interest, and many recommendation models based on deep learning have been proposed. However, as far as we know, there is not yet any study which gathers multi-criteria recommendation and collaborative filtering with deep learning. In this work, we propose a novel multi-criteria collaborative filtering model based on deep learning. Our model contains two parts: in the first part, the model obtains the users and items’ features and uses them as an input to the criteria ratings deep neural network, which predicts the criteria ratings. Those criteria ratings constitute the input to the second part, which is the overall rating deep neural network and is used to predict the overall rating. Experiments on a real-world dataset demonstrate that our proposed model outperformed the other state-of-the-art methods, and this provides evidence pointing to the success of employing deep learning and multi-criteria in recommendation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hopelife发布了新的文献求助10
1秒前
李健应助Terry采纳,获得10
1秒前
闹闹完成签到,获得积分10
1秒前
1秒前
tianmeiling完成签到 ,获得积分10
3秒前
3秒前
文文发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
Hello应助DrW1111采纳,获得30
8秒前
IV完成签到,获得积分10
8秒前
shinn发布了新的文献求助10
9秒前
9秒前
flywee完成签到,获得积分10
10秒前
11秒前
wangxin发布了新的文献求助10
12秒前
12秒前
wuludie应助IV采纳,获得10
13秒前
re发布了新的文献求助10
13秒前
香蕉觅云应助jing采纳,获得10
14秒前
卡卡西应助让我多睡会吧采纳,获得10
14秒前
华123应助sxt采纳,获得10
14秒前
十三发布了新的文献求助10
15秒前
天天快乐应助la采纳,获得10
15秒前
16秒前
16秒前
16秒前
16秒前
傲娇的小蕾完成签到,获得积分10
17秒前
fffff发布了新的文献求助80
17秒前
木木康完成签到,获得积分10
18秒前
坦率紫烟完成签到,获得积分10
18秒前
19秒前
helen发布了新的文献求助10
20秒前
qcwindchasing完成签到,获得积分10
21秒前
畅快的胡萝卜完成签到,获得积分10
21秒前
fancyiii发布了新的文献求助10
21秒前
Lum1na发布了新的文献求助10
21秒前
ling发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303