Growth prediction of two bacterial populations in co-culture with lactic acid bacteria

乳酸 细菌 食品科学 微生物学 细菌生长 微生物培养 化学 生物 遗传学
作者
Pavel Ačai,Alžbeta Medveďová,Tatiana Mančušková,Ľubomí­r Valí­k
出处
期刊:Food Science and Technology International [SAGE]
卷期号:25 (8): 692-700 被引量:11
标识
DOI:10.1177/1082013219860360
摘要

The co-culture growth of Staphylococcus aureus, Escherichia coli and lactic acid bacteria starter culture in milk was quantitatively evaluated and modelled with a set of coupled differential equations originally proposed by Baranyi and Roberts and by Gimenez and Dalgaard (BR–GD model). The lactic acid bacteria starter culture showed the ability to induce an early stationary phase of both E. coli and S. aureus populations at different combination of temperature (ranging from 12 to 37 ℃) and lactic acid bacteria inocula (from approx. 10 3 to 10 6 CFU/ml). First, the prediction ability was performed only with parameters estimated from individual growth curves of E. coli, S. aureus and the lactic acid bacteria in milk (Dataset 1, 21 experiments). Subsequently, the model was extended with the average competition coefficients (E-BR–GD model) that represented quantitative relations among the populations. The prediction ability of this model was validated with the second dataset consisting of seven experiments. Results and also their statistical indices (accuracy and bias factors) showed that the E-BR–GD model improved growth prediction of all involved populations. Thus, the total root mean square error decreased from 0.457, 0.840 and 0.322 log CFU/ml (BR–GD model) to 0.290, 0.245 and 0.333 log CFU/ml (E-BR–GD) for S. aureus, E. coli and lactic acid bacteria, respectively. This approach in growth prediction of multiple competing microbial populations can be used in assessment of S. aureus and E. coli exposure from raw milk cheeses consumption and contribute to decision making in prevention of staphylococcal enterotoxin production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助蓦回采纳,获得10
1秒前
宸一完成签到,获得积分10
2秒前
123应助SAN采纳,获得20
2秒前
WF完成签到,获得积分10
2秒前
奋斗凝蝶完成签到,获得积分10
2秒前
恬恬完成签到,获得积分10
2秒前
丰富的不惜完成签到,获得积分10
2秒前
田様应助CC采纳,获得10
2秒前
Hello应助ren采纳,获得10
2秒前
3秒前
桐桐应助孤独代亦采纳,获得10
3秒前
5秒前
fer发布了新的文献求助10
5秒前
过冷风完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
汪汪完成签到,获得积分10
8秒前
努力追赶的科研人完成签到,获得积分10
8秒前
宋欢完成签到 ,获得积分10
9秒前
嘟嘟图图发布了新的文献求助10
10秒前
汉弗里戴维完成签到,获得积分10
10秒前
Anonymous发布了新的文献求助10
11秒前
11秒前
右边完成签到,获得积分10
11秒前
11秒前
Vyasa完成签到,获得积分10
12秒前
whosyourdaddyva完成签到,获得积分10
13秒前
溏心蛋完成签到,获得积分10
13秒前
13秒前
13秒前
奋斗凝蝶发布了新的文献求助10
14秒前
十三完成签到,获得积分10
14秒前
14秒前
良辰应助jzmupyj采纳,获得10
14秒前
14秒前
谨慎盼山完成签到,获得积分10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308114
求助须知:如何正确求助?哪些是违规求助? 2941617
关于积分的说明 8504720
捐赠科研通 2616297
什么是DOI,文献DOI怎么找? 1429556
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648748