Using Machine Learning for Prediction of Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural Perturbations

Pedotransfer函数 土壤水分 土壤科学 导水率 反向 灵敏度(控制系统) 数学 算法 机器学习 环境科学 计算机科学 工程类 几何学 电子工程
作者
Samuel N. Araya,Teamrat A. Ghezzehei
出处
期刊:Water Resources Research [Wiley]
卷期号:55 (7): 5715-5737 被引量:140
标识
DOI:10.1029/2018wr024357
摘要

Abstract Saturated hydraulic conductivity ( K s ) is a fundamental soil property that regulates the fate of water in soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are routinely used to estimate it. Despite much progress over the years, the performance of current generic PTFs estimating K s remains poor. Using machine learning, high‐performance computing, and a large database of over 18,000 soils, we developed new PTFs to predict K s . We compared the performances of four machine learning algorithms and different predictor sets. We evaluated the relative importance of soil properties in explaining K s . PTF models based on boosted regression tree algorithm produced the best models with root‐mean‐squared log‐transformed error in ranges of 0.4 to 0.3 ( log 10 (cm/day) ). The 10th percentile particle diameter ( d 10 ) was found to be the most important predictor followed by clay content, bulk density ( ρ b ), and organic carbon content ( C ). The sensitivity of K s to soil structure was investigated using ρ b and C as proxies for soil structure. An inverse relationship was observed between ρ b and K s , with the highest sensitivity at around 1.8 g/cm 3 for most textural classes. Soil C showed a complex relationship with K s with an overall positive relation for fine‐textured and midtextured soils but an inverse relation for coarse‐textured soils. This study sought to maximize the extraction of information from a large database to develop generic machine learning‐based PTFs for estimating K s . Models developed here have been made publicly available and can be readily used to predict K s .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joyan发布了新的文献求助10
刚刚
刚刚
36456657应助毕业了采纳,获得10
1秒前
大个应助Mryuan采纳,获得10
1秒前
wls发布了新的文献求助10
1秒前
bkagyin应助jialin采纳,获得10
2秒前
2秒前
2秒前
胡图图完成签到,获得积分10
2秒前
2秒前
lllllc完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
老头有低保完成签到,获得积分10
4秒前
yelis发布了新的文献求助10
4秒前
研友_nvg41Z完成签到,获得积分10
4秒前
Jcer完成签到,获得积分10
4秒前
4秒前
5秒前
aikanwenxian发布了新的文献求助10
5秒前
yyxx完成签到,获得积分10
6秒前
thousandlong发布了新的文献求助10
6秒前
和谐续完成签到 ,获得积分10
7秒前
7秒前
torch132完成签到,获得积分10
8秒前
不知道完成签到,获得积分20
8秒前
迅速斑马完成签到,获得积分10
8秒前
是玥玥啊完成签到,获得积分10
8秒前
冷静惜文发布了新的文献求助10
8秒前
8秒前
8秒前
小颜完成签到,获得积分10
8秒前
能干的吐司完成签到 ,获得积分10
8秒前
YXG完成签到 ,获得积分10
9秒前
充电宝应助Pom采纳,获得10
9秒前
9秒前
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440547
求助须知:如何正确求助?哪些是违规求助? 3037043
关于积分的说明 8967211
捐赠科研通 2725531
什么是DOI,文献DOI怎么找? 1495015
科研通“疑难数据库(出版商)”最低求助积分说明 691006
邀请新用户注册赠送积分活动 687716