Using Machine Learning for Prediction of Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural Perturbations

Pedotransfer函数 土壤水分 土壤科学 导水率 反向 灵敏度(控制系统) 数学 算法 机器学习 环境科学 计算机科学 工程类 几何学 电子工程
作者
Samuel N. Araya,Teamrat A. Ghezzehei
出处
期刊:Water Resources Research [Wiley]
卷期号:55 (7): 5715-5737 被引量:140
标识
DOI:10.1029/2018wr024357
摘要

Abstract Saturated hydraulic conductivity ( K s ) is a fundamental soil property that regulates the fate of water in soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are routinely used to estimate it. Despite much progress over the years, the performance of current generic PTFs estimating K s remains poor. Using machine learning, high‐performance computing, and a large database of over 18,000 soils, we developed new PTFs to predict K s . We compared the performances of four machine learning algorithms and different predictor sets. We evaluated the relative importance of soil properties in explaining K s . PTF models based on boosted regression tree algorithm produced the best models with root‐mean‐squared log‐transformed error in ranges of 0.4 to 0.3 ( log 10 (cm/day) ). The 10th percentile particle diameter ( d 10 ) was found to be the most important predictor followed by clay content, bulk density ( ρ b ), and organic carbon content ( C ). The sensitivity of K s to soil structure was investigated using ρ b and C as proxies for soil structure. An inverse relationship was observed between ρ b and K s , with the highest sensitivity at around 1.8 g/cm 3 for most textural classes. Soil C showed a complex relationship with K s with an overall positive relation for fine‐textured and midtextured soils but an inverse relation for coarse‐textured soils. This study sought to maximize the extraction of information from a large database to develop generic machine learning‐based PTFs for estimating K s . Models developed here have been made publicly available and can be readily used to predict K s .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助何东旭采纳,获得10
1秒前
1秒前
2秒前
科研通AI6.1应助在水一方采纳,获得30
2秒前
shuang完成签到,获得积分10
3秒前
4秒前
合适的嵩发布了新的文献求助10
4秒前
4秒前
阿白完成签到,获得积分10
4秒前
舒心盼曼发布了新的文献求助30
5秒前
AmyDong完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
小杨发布了新的文献求助10
7秒前
阿司匹林完成签到,获得积分10
7秒前
7秒前
忘记密码发布了新的文献求助10
8秒前
8秒前
h0jian09完成签到,获得积分10
9秒前
和谐耳机完成签到 ,获得积分10
9秒前
William发布了新的文献求助10
9秒前
Hh完成签到,获得积分10
10秒前
10秒前
ZIS发布了新的文献求助10
10秒前
海风发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
guoer完成签到,获得积分10
11秒前
wang发布了新的文献求助10
11秒前
AmyDong发布了新的文献求助10
12秒前
13秒前
幻想小蜜蜂完成签到,获得积分10
13秒前
jacob258发布了新的文献求助20
13秒前
13秒前
hfgeyt发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400