分步结晶(地质学)
地质学
地球化学
长英质
镁铁质
地幔(地质学)
火成岩分异
底镀
分层侵入
微量元素
部分熔融
俯冲
构造学
古生物学
作者
Alex Burton‐Johnson,Colin G. Macpherson,Chris J. Ottley,Geoff Nowell,Adrian J. Boyce
标识
DOI:10.1093/petrology/egz036
摘要
Abstract New geochemical data are presented for the composite units of the Mount Kinabalu granitoid intrusion of Borneo and utilised to explore the discrimination between crustal- and mantle-derived granitic magmas. The geochemical data demonstrate that the units making up this composite intrusion became more potassic through time. This was accompanied by an evolution of isotope ratios from a continental-affinity towards a slightly more mantle-affinity (87Sr/86Sri ∼0·7078; 143Nd/144Ndi ∼0·51245; 206Pb/204Pbi ∼18·756 for the oldest unit compared to 87Sr/86Sri ∼0·7065, 143Nd/144Ndi ∼0·51250 and 206Pb/204Pbi ∼18·721 for the younger units). Oxygen isotope ratios (calculated whole-rock δ18O of +6·5–9·3‰) do not show a clear trend with time. The isotopic data indicate that the magma cannot result only from fractional crystallization of a mantle-derived magma. Alkali metal compositions show that crustal anatexis is also an unsuitable process for genesis of the intrusion. The data indicate that the high-K units were generated by fractional crystallization of a primary, mafic magma, followed by assimilation of the partially melted sedimentary overburden. We present a new, Equilibrated Major Element -Assimilation with Fractional Crystallization (EME-AFC) approach for simultaneously modelling the major element, trace element, and radiogenic and oxygen isotope compositions during such magmatic differentiation; addressing the lack of current AFC modelling approaches for felsic, amphibole- or biotite-bearing systems. We propose that Mt Kinabalu was generated through low degree melting of upwelling fertile metasomatized mantle driven by regional crustal extension in the Late Miocene.
科研通智能强力驱动
Strongly Powered by AbleSci AI