CommunityGAN: Community Detection with Generative Adversarial Nets

计算机科学 嵌入 聚类分析 鉴别器 极小极大 特征学习 人工智能 图嵌入 图形 群落结构 对抗制 机器学习 理论计算机科学 数学 数学优化 组合数学 探测器 电信
作者
Yuting Jia,Qinqin Zhang,Weinan Zhang,Xinbing Wang
标识
DOI:10.1145/3308558.3313564
摘要

Community detection refers to the task of discovering groups of vertices sharing similar properties or functions so as to understand the network data. With the recent development of deep learning, graph representation learning techniques are also utilized for community detection. However, the communities can only be inferred by applying clustering algorithms based on learned vertex embeddings. These general cluster algorithms like K-means and Gaussian Mixture Model cannot output much overlapped communities, which have been proved to be very common in many real-world networks. In this paper, we propose CommunityGAN, a novel community detection framework that jointly solves overlapping community detection and graph representation learning. First, unlike the embedding of conventional graph representation learning algorithms where the vector entry values have no specific meanings, the embedding of CommunityGAN indicates the membership strength of vertices to communities. Second, a specifically designed Generative Adversarial Net (GAN) is adopted to optimize such embedding. Through the minimax competition between the motif-level generator and discriminator, both of them can alternatively and iteratively boost their performance and finally output a better community structure. Extensive experiments on synthetic data and real-world tasks demonstrate that CommunityGAN achieves substantial community detection performance gains over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气的雅容应助草木采纳,获得10
刚刚
刚刚
欣欣子发布了新的文献求助10
1秒前
2秒前
3秒前
FashionBoy应助李理采纳,获得10
4秒前
5秒前
6秒前
积极慕梅应助852采纳,获得10
6秒前
lu发布了新的文献求助10
7秒前
多年以后发布了新的文献求助10
8秒前
花痴的裘发布了新的文献求助10
8秒前
大模型应助宝海青采纳,获得10
8秒前
lsy发布了新的文献求助10
12秒前
12秒前
13秒前
深情安青应助陈补天采纳,获得10
13秒前
科研通AI2S应助草木采纳,获得10
14秒前
科研通AI2S应助超帅的凤凰采纳,获得10
14秒前
14秒前
顺利毕业发布了新的文献求助10
15秒前
527完成签到,获得积分10
16秒前
宗语雪完成签到,获得积分10
16秒前
称心梦之发布了新的文献求助10
16秒前
17秒前
zhuzhihao完成签到,获得积分10
18秒前
Hailey发布了新的文献求助10
19秒前
爽朗雨后风完成签到,获得积分10
19秒前
21秒前
chenchenchen完成签到,获得积分10
22秒前
teaser完成签到 ,获得积分10
23秒前
16关注了科研通微信公众号
24秒前
24秒前
24秒前
24秒前
吗喽完成签到,获得积分10
24秒前
ncycg完成签到,获得积分10
25秒前
飘逸的青雪完成签到,获得积分10
25秒前
26秒前
陈补天发布了新的文献求助10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244