材料科学
超级电容器
杂原子
电容
介孔材料
比表面积
功率密度
多孔性
纳米技术
碳纤维
化学工程
储能
碳纳米泡沫
复合材料
有机化学
电极
复合数
功率(物理)
工程类
化学
戒指(化学)
催化作用
物理化学
物理
量子力学
作者
Huarong Peng,Bin Yao,Xijun Wei,Tianyu Liu,Tianyi Kou,Peng Xiao,Yunhuai Zhang,Yat Li
标识
DOI:10.1002/aenm.201803665
摘要
Abstract Carbonaceous materials are attractive supercapacitor electrode materials due to their high electronic conductivity, large specific surface area, and low cost. Here, a unique hierarchical porous N,O,S‐enriched carbon foam (KNOSC) with high level of structural complexity for supercapacitors is reported. It is fabricated via a combination of a soft‐template method, freeze‐drying, and chemical etching. The carbon foam is a macroporous structure containing a network of mesoporous channels filled with micropores. It has an extremely large specific surface area of 2685 m 2 g −1 . The pore engineered carbon structure is also uniformly doped with N, O, and S. The KNOSC electrode achieves an outstanding capacitance of 402.5 F g −1 at 1 A g −1 and superior rate capability of 308.5 F g −1 at 100 A g −1 . The KNOSC exhibits a Bode frequency at the phase angle of −45° of 18.5 Hz, which corresponds to a time constant of 0.054 s only. A symmetric supercapacitor device using KNOSC as electrodes can be charged/discharged within 1.52 s to deliver a specific energy density of 15.2 W h kg −1 at a power density of 36 kW kg −1 . These results suggest that the pore and heteroatom engineered structures are promising electrode materials for ultrafast charging.
科研通智能强力驱动
Strongly Powered by AbleSci AI