AIM-SNPtag: A computationally efficient approach for developing ancestry-informative SNP panels

SNP公司 推论 人口 集合(抽象数据类型) 单核苷酸多态性 核苷酸多型性 祖先信息标记 计算机科学 数据挖掘 遗传学 生物 人工智能 基因型 基因 医学 环境卫生 程序设计语言
作者
Shilei Zhao,Cheng‐Min Shi,Liang Ma,Qi Liu,Yongming Liu,Fuquan Wu,Lianjiang Chi,Hua Chen
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:38: 245-253 被引量:18
标识
DOI:10.1016/j.fsigen.2018.10.015
摘要

Inferring an individual's ancestry or group membership using a small set of highly informative genetic markers is very useful in forensic and medical genetics. However, given the huge amount of SNP data available from a diverse of populations, it is challenging to develop informative panels by exhaustively searching for all possible SNP combinations. In this study, we formulate it as an algorithm problem of selecting an optimal set of SNPs that maximizes the inference accuracy while minimizes the set size. Built on this conception, we develop a computational approach that is capable of constructing ancestry informative panels from multi-population genome-wide SNP data efficiently. We evaluated the performance of the method by comparing the panel size and membership inference accuracy of the constructed SNP panels to panels selected through empirical procedures in previous studies. For the membership inference of population groups including Asian, European, African, East Asian and Southeast Asian, a 36-SNP panel developed by our approach has an overall accuracy of 99.07%, and a 21-SNP subset of the panel has an overall accuracy of 95.36%. In comparison, an existing panel requires 74 SNPs to achieve an accuracy of 94.14% on the same set of population groups. We further apply the method to four subpopulations within Europe (Finnish, British, Spanish and Italian); a 175-SNP panel can discriminate individuals of those European subpopulations with an accuracy of 99.36%, of which a 68-SNP subset can achieve an accuracy of 95.07%. We expect our method to be a useful tool for constructing ancestry informative markers in forensic genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助子非鱼采纳,获得10
刚刚
1秒前
3秒前
mzhmhy发布了新的文献求助10
5秒前
李健的粉丝团团长应助ASA采纳,获得30
6秒前
Choi完成签到,获得积分0
6秒前
无辜如容发布了新的文献求助10
6秒前
123完成签到,获得积分10
7秒前
8秒前
单耳兔完成签到 ,获得积分10
8秒前
潇湘雪月发布了新的文献求助10
8秒前
故意的靳完成签到,获得积分10
10秒前
mzhmhy完成签到,获得积分10
10秒前
bkagyin应助wish采纳,获得10
14秒前
Afaq发布了新的文献求助10
14秒前
果粒多发布了新的文献求助10
15秒前
15秒前
无辜如容完成签到,获得积分10
16秒前
16秒前
19秒前
20秒前
ASA发布了新的文献求助30
20秒前
21秒前
情怀应助tingting9采纳,获得10
22秒前
FXQ123_范发布了新的文献求助10
22秒前
sun完成签到,获得积分20
22秒前
24秒前
彭于晏应助wldsd采纳,获得30
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
25秒前
高一淼发布了新的文献求助10
26秒前
明道若昧完成签到,获得积分10
26秒前
上官若男应助mk采纳,获得10
27秒前
wish完成签到,获得积分10
29秒前
wish发布了新的文献求助10
31秒前
稍等一下完成签到 ,获得积分10
32秒前
momo发布了新的文献求助10
32秒前
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136