AIM-SNPtag: A computationally efficient approach for developing ancestry-informative SNP panels

SNP公司 推论 人口 集合(抽象数据类型) 单核苷酸多态性 核苷酸多型性 祖先信息标记 计算机科学 数据挖掘 遗传学 生物 人工智能 基因型 基因 医学 环境卫生 程序设计语言
作者
Shilei Zhao,Cheng‐Min Shi,Liang Ma,Qi Liu,Yongming Liu,Fuquan Wu,Lianjiang Chi,Hua Chen
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:38: 245-253 被引量:18
标识
DOI:10.1016/j.fsigen.2018.10.015
摘要

Inferring an individual's ancestry or group membership using a small set of highly informative genetic markers is very useful in forensic and medical genetics. However, given the huge amount of SNP data available from a diverse of populations, it is challenging to develop informative panels by exhaustively searching for all possible SNP combinations. In this study, we formulate it as an algorithm problem of selecting an optimal set of SNPs that maximizes the inference accuracy while minimizes the set size. Built on this conception, we develop a computational approach that is capable of constructing ancestry informative panels from multi-population genome-wide SNP data efficiently. We evaluated the performance of the method by comparing the panel size and membership inference accuracy of the constructed SNP panels to panels selected through empirical procedures in previous studies. For the membership inference of population groups including Asian, European, African, East Asian and Southeast Asian, a 36-SNP panel developed by our approach has an overall accuracy of 99.07%, and a 21-SNP subset of the panel has an overall accuracy of 95.36%. In comparison, an existing panel requires 74 SNPs to achieve an accuracy of 94.14% on the same set of population groups. We further apply the method to four subpopulations within Europe (Finnish, British, Spanish and Italian); a 175-SNP panel can discriminate individuals of those European subpopulations with an accuracy of 99.36%, of which a 68-SNP subset can achieve an accuracy of 95.07%. We expect our method to be a useful tool for constructing ancestry informative markers in forensic genetics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
刚刚
Orange应助qq大魔王采纳,获得10
刚刚
Xtay发布了新的文献求助10
刚刚
赵勇完成签到,获得积分10
刚刚
哈哈哈完成签到,获得积分10
1秒前
yyy完成签到,获得积分10
1秒前
小方发布了新的文献求助10
2秒前
ginchuodan发布了新的文献求助10
3秒前
希望天下0贩的0应助Ratziel采纳,获得10
3秒前
3秒前
耶耶发布了新的文献求助10
3秒前
hannuannuan发布了新的文献求助10
3秒前
NexusExplorer应助小吉麻麻采纳,获得10
4秒前
郑小传完成签到,获得积分10
4秒前
思源应助子姜采纳,获得10
4秒前
pinkangel发布了新的文献求助100
5秒前
njc完成签到,获得积分10
6秒前
邵璞完成签到,获得积分10
6秒前
五六完成签到,获得积分10
7秒前
7秒前
8秒前
Jolin完成签到,获得积分10
8秒前
zc完成签到,获得积分10
9秒前
ANY发布了新的文献求助30
9秒前
充电宝应助Damy采纳,获得10
9秒前
宋祝福发布了新的文献求助10
10秒前
喻箴完成签到,获得积分10
10秒前
10秒前
coco完成签到,获得积分10
10秒前
11秒前
小杭76发布了新的文献求助10
12秒前
二十二关注了科研通微信公众号
12秒前
12秒前
丫丫完成签到,获得积分10
12秒前
12秒前
早起吃饱多运动完成签到 ,获得积分10
12秒前
科研通AI6应助qq大魔王采纳,获得10
13秒前
huhuan发布了新的文献求助10
13秒前
剑八发布了新的文献求助10
13秒前
yu完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490