清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AIM-SNPtag: A computationally efficient approach for developing ancestry-informative SNP panels

SNP公司 推论 人口 集合(抽象数据类型) 单核苷酸多态性 核苷酸多型性 祖先信息标记 计算机科学 数据挖掘 遗传学 生物 人工智能 基因型 基因 医学 环境卫生 程序设计语言
作者
Shilei Zhao,Cheng‐Min Shi,Liang Ma,Qi Liu,Yongming Liu,Fuquan Wu,Lianjiang Chi,Hua Chen
出处
期刊:Forensic Science International-genetics [Elsevier BV]
卷期号:38: 245-253 被引量:18
标识
DOI:10.1016/j.fsigen.2018.10.015
摘要

Inferring an individual's ancestry or group membership using a small set of highly informative genetic markers is very useful in forensic and medical genetics. However, given the huge amount of SNP data available from a diverse of populations, it is challenging to develop informative panels by exhaustively searching for all possible SNP combinations. In this study, we formulate it as an algorithm problem of selecting an optimal set of SNPs that maximizes the inference accuracy while minimizes the set size. Built on this conception, we develop a computational approach that is capable of constructing ancestry informative panels from multi-population genome-wide SNP data efficiently. We evaluated the performance of the method by comparing the panel size and membership inference accuracy of the constructed SNP panels to panels selected through empirical procedures in previous studies. For the membership inference of population groups including Asian, European, African, East Asian and Southeast Asian, a 36-SNP panel developed by our approach has an overall accuracy of 99.07%, and a 21-SNP subset of the panel has an overall accuracy of 95.36%. In comparison, an existing panel requires 74 SNPs to achieve an accuracy of 94.14% on the same set of population groups. We further apply the method to four subpopulations within Europe (Finnish, British, Spanish and Italian); a 175-SNP panel can discriminate individuals of those European subpopulations with an accuracy of 99.36%, of which a 68-SNP subset can achieve an accuracy of 95.07%. We expect our method to be a useful tool for constructing ancestry informative markers in forensic genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋夜临完成签到,获得积分0
10秒前
24秒前
纳米果完成签到,获得积分10
26秒前
hxt_1025发布了新的文献求助10
29秒前
pikelet完成签到,获得积分10
38秒前
赘婿应助pikelet采纳,获得20
41秒前
今后应助科研通管家采纳,获得10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
王新彤完成签到 ,获得积分10
1分钟前
尘远知山静完成签到 ,获得积分10
1分钟前
真实的傲儿完成签到 ,获得积分10
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
2分钟前
Lee0923发布了新的文献求助10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
天成浩子完成签到 ,获得积分10
2分钟前
Lee0923完成签到,获得积分10
2分钟前
美好的冰蓝完成签到 ,获得积分10
2分钟前
Beyond095完成签到 ,获得积分10
3分钟前
3分钟前
西山菩提完成签到,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
敏敏9813发布了新的文献求助10
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
北国雪未消完成签到 ,获得积分10
3分钟前
刘敦銮完成签到 ,获得积分10
3分钟前
科研狗完成签到 ,获得积分10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
云烟完成签到 ,获得积分10
3分钟前
myp完成签到,获得积分10
4分钟前
lql完成签到 ,获得积分10
4分钟前
ywzwszl完成签到,获得积分0
4分钟前
ding应助阳光的丹雪采纳,获得10
4分钟前
dx完成签到,获得积分10
5分钟前
lilylwy完成签到 ,获得积分0
5分钟前
debu9完成签到,获得积分10
5分钟前
英姑应助科研通管家采纳,获得50
5分钟前
懒得理完成签到 ,获得积分10
5分钟前
WerWu完成签到,获得积分0
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5222574
求助须知:如何正确求助?哪些是违规求助? 4395286
关于积分的说明 13681356
捐赠科研通 4258969
什么是DOI,文献DOI怎么找? 2337077
邀请新用户注册赠送积分活动 1334472
关于科研通互助平台的介绍 1289648