反推
沉降时间
控制理论(社会学)
跟踪误差
计算机科学
非线性系统
人工神经网络
跟踪(教育)
控制器(灌溉)
功能(生物学)
控制(管理)
自适应控制
控制工程
阶跃响应
人工智能
工程类
心理学
教育学
农学
物理
量子力学
进化生物学
生物
作者
Yang Liu,Xiaoping Liu,Yuanwei Jing
标识
DOI:10.1016/j.ins.2018.08.029
摘要
This paper focuses on the semi-globally practical finite-time tracking control problem for a class of nonlinear systems with non-strict feedback structure. Inspired by prescribed performance control (PPC), a new performance function called finite-time performance function (FTPF) is defined for the first time. With the aid of neural networks and backstepping, an adaptive finite-time tracking controller is properly designed. Different from the existing finite-time results, the proposed method can guarantee that the tracking error converges to an arbitrarily small region at any settling time and all the signals in the closed-loop system are semi-globally practical finite-time stable (SGPF-stable). Two simulation examples are given to exhibit the effectiveness and superiority of the presented technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI