亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Object Detection With Deep Learning: A Review

目标检测 计算机科学 人工智能 深度学习 卷积神经网络 机器学习 背景(考古学) 模式识别(心理学) 对象类检测 行人检测 人脸检测 对象(语法) 面部识别系统 行人 工程类 古生物学 生物 运输工程
作者
Zhong‐Qiu Zhao,Peng Zheng,Shou-Tao Xu,Xindong Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 3212-3232 被引量:3755
标识
DOI:10.1109/tnnls.2018.2876865
摘要

Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
lizhang发布了新的文献求助10
13秒前
hilygogo完成签到,获得积分10
35秒前
露露完成签到,获得积分10
3分钟前
houha233发布了新的文献求助10
3分钟前
3分钟前
宁异勿同完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助踏实的芸遥采纳,获得30
4分钟前
5分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
zz发布了新的文献求助10
5分钟前
5分钟前
5分钟前
houha233完成签到,获得积分10
5分钟前
6分钟前
xuhanghang发布了新的文献求助10
6分钟前
空曲完成签到 ,获得积分10
9分钟前
9分钟前
大模型应助zz采纳,获得10
9分钟前
木森ab发布了新的文献求助10
9分钟前
JamesPei应助木森ab采纳,获得10
10分钟前
木森ab完成签到,获得积分20
10分钟前
朱朱完成签到,获得积分10
10分钟前
大个应助朱朱采纳,获得10
10分钟前
April完成签到 ,获得积分10
11分钟前
古炮完成签到 ,获得积分10
14分钟前
香蕉觅云应助Zephyr采纳,获得30
14分钟前
15分钟前
hhhhhhhhhh完成签到 ,获得积分10
16分钟前
小巧的柏柳完成签到 ,获得积分10
16分钟前
Setlla完成签到 ,获得积分10
16分钟前
Aries完成签到 ,获得积分10
17分钟前
研友_VZG7GZ应助lik采纳,获得10
17分钟前
Zephyr发布了新的文献求助30
17分钟前
17分钟前
17分钟前
小巫发布了新的文献求助10
17分钟前
17分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176