Live Tracking and Dense Reconstruction for Handheld Monocular Endoscopy

人工智能 计算机视觉 计算机科学 单眼 视差 同时定位和映射 迭代重建 移动机器人 机器人
作者
Nader Mahmoud,Toby Collins,Alexandre Hostettler,Luc Soler,Christophe Doignon,J. M. M. Montiel
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (1): 79-89 被引量:125
标识
DOI:10.1109/tmi.2018.2856109
摘要

Contemporary endoscopic simultaneous localization and mapping (SLAM) methods accurately compute endoscope poses; however, they only provide a sparse 3-D reconstruction that poorly describes the surgical scene. We propose a novel dense SLAM method whose qualities are: 1) monocular, requiring only RGB images of a handheld monocular endoscope; 2) fast, providing endoscope positional tracking and 3-D scene reconstruction, running in parallel threads; 3) dense, yielding an accurate dense reconstruction; 4) robust, to the severe illumination changes, poor texture and small deformations that are typical in endoscopy; and 5) self-contained, without needing any fiducials nor external tracking devices and, therefore, it can be smoothly integrated into the surgical workflow. It works as follows. First, accurate cluster frame poses are estimated using the sparse SLAM feature matches. The system segments clusters of video frames according to parallax criteria. Next, dense matches between cluster frames are computed in parallel by a variational approach that combines zero mean normalized cross correlation and a gradient Huber norm regularizer. This combination copes with challenging lighting and textures at an affordable time budget on a modern GPU. It can outperform pure stereo reconstructions, because the frames cluster can provide larger parallax from the endoscope's motion. We provide an extensive experimental validation on real sequences of the porcine abdominal cavity, both in-vivo and ex-vivo. We also show a qualitative evaluation on human liver. In addition, we show a comparison with the other dense SLAM methods showing the performance gain in terms of accuracy, density, and computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
阿娟儿发布了新的文献求助10
2秒前
HJM发布了新的文献求助10
2秒前
胜多负少应助清新的梦桃采纳,获得10
2秒前
2秒前
秀丽的小鸽子完成签到,获得积分10
2秒前
even发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
ray发布了新的文献求助10
6秒前
小陈栗子发布了新的文献求助10
7秒前
gou完成签到,获得积分20
7秒前
8秒前
朝菌完成签到,获得积分10
9秒前
in应助橙鱼采纳,获得20
9秒前
荔枝不白完成签到,获得积分10
9秒前
glowworm完成签到 ,获得积分10
10秒前
11秒前
lulu123发布了新的文献求助10
11秒前
科研通AI5应助小陈栗子采纳,获得10
11秒前
汉堡包应助wang采纳,获得10
12秒前
Owen应助Josh采纳,获得30
12秒前
12秒前
Dou_Xiaowen发布了新的文献求助10
13秒前
JamesPei应助长孙盛男采纳,获得30
14秒前
科研通AI2S应助杭州007采纳,获得10
15秒前
充电宝应助四福祥采纳,获得10
16秒前
17秒前
realssr发布了新的文献求助10
18秒前
19秒前
安详中蓝完成签到 ,获得积分10
19秒前
Island D发布了新的文献求助10
19秒前
LY完成签到 ,获得积分10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574410
求助须知:如何正确求助?哪些是违规求助? 3144137
关于积分的说明 9455497
捐赠科研通 2845648
什么是DOI,文献DOI怎么找? 1564515
邀请新用户注册赠送积分活动 732319
科研通“疑难数据库(出版商)”最低求助积分说明 719015