Privacy-preserving governmental data publishing: A fog-computing-based differential privacy approach

差别隐私 计算机科学 数据发布 隐私软件 云计算 隐私保护 信息隐私 计算机安全 互联网隐私 设计隐私 出版 大数据 集合(抽象数据类型) 数据挖掘 法学 操作系统 程序设计语言 政治学
作者
Chunhui Piao,Yajuan Shi,Jiaqi Yan,Changyou Zhang,Liping Liu
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:90: 158-174 被引量:38
标识
DOI:10.1016/j.future.2018.07.038
摘要

With the growing availability of public open data, the protection of citizens’ privacy has become a vital issue for governmental data publishing. However, there are a large number of operational risks in the current government cloud platforms. When the cloud platform is attacked, most existing privacy protection models for data publishing cannot resist the attacks if the attacker has prior background knowledge. Potential attackers may gain access to the published statistical data, and identify specific individual’s background information, which may cause the disclosure of citizens’ private information. To address this problem, we propose a fog-computing-based differential privacy approach for privacy-preserving data publishing in this paper. We discuss the risk of citizens’ privacy disclosure related to governmental data publishing, and present a differential privacy framework for publishing governmental statistical data based on fog computing. Based on the framework, a data publishing algorithm using a MaxDiff histogram is developed, which can be used to realize the function of preserving user privacy based on fog computing. Applying the differential method, Laplace noises are added to the original data set, which prevents citizens’ privacy from disclosure even if attackers get strong background knowledge. According to the maximum frequency difference, the adjacent data bins are grouped, then the differential privacy histogram with minimum average error can be constructed. We evaluate the proposed approach by computational experiments based on the real data set of Philippine families’ income and expenditures provided by Kaggle. It shows that the proposed data publishing approach can not only effectively protect citizens’ privacy, but also reduce the query sensitivity and improve the utility of the data published.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助zhouleiwang采纳,获得10
2秒前
GHL完成签到,获得积分10
3秒前
愉快白亦完成签到,获得积分10
3秒前
zho发布了新的文献求助10
5秒前
程宇发布了新的文献求助30
6秒前
墨尘发布了新的文献求助10
6秒前
小白完成签到,获得积分10
8秒前
8秒前
王小志完成签到,获得积分10
10秒前
11秒前
zhou269发布了新的文献求助10
12秒前
蓁66完成签到,获得积分10
13秒前
坚强的依秋完成签到,获得积分10
13秒前
清爽达完成签到 ,获得积分10
13秒前
223311发布了新的文献求助10
14秒前
程宇发布了新的文献求助10
16秒前
哈基米完成签到 ,获得积分20
16秒前
wf完成签到,获得积分10
16秒前
所所应助寒一采纳,获得10
17秒前
小青虫完成签到,获得积分10
17秒前
烟花应助有机分子笼采纳,获得10
19秒前
19秒前
脑洞疼应助畅快代柔采纳,获得10
19秒前
zhou269完成签到,获得积分10
20秒前
21秒前
科研通AI5应助高兴的玉米采纳,获得10
22秒前
JamesPei应助阳光向秋采纳,获得10
23秒前
jason完成签到 ,获得积分10
24秒前
223311完成签到,获得积分10
25秒前
26秒前
26秒前
LW发布了新的文献求助10
28秒前
NexusExplorer应助lemon采纳,获得10
28秒前
程宇发布了新的文献求助10
29秒前
戒赌麻将完成签到 ,获得积分10
30秒前
30秒前
31秒前
小二郎应助欧阳香彤采纳,获得10
33秒前
元羞花完成签到,获得积分10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730317
求助须知:如何正确求助?哪些是违规求助? 3275084
关于积分的说明 9990852
捐赠科研通 2990682
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779610
科研通“疑难数据库(出版商)”最低求助积分说明 748331