Reinforcement learning for demand response: A review of algorithms and modeling techniques

需求响应 强化学习 智能电网 峰值需求 灵活性(工程) 计算机科学 需求模式 暖通空调 需求管理 激励 可再生能源 网格 环境经济学 风险分析(工程) 空调 工程类 经济 人工智能 业务 微观经济学 电气工程 几何学 管理 宏观经济学 数学 机械工程
作者
José R. Vázquez-Canteli,Zoltán Nagy
出处
期刊:Applied Energy [Elsevier BV]
卷期号:235: 1072-1089 被引量:422
标识
DOI:10.1016/j.apenergy.2018.11.002
摘要

Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
九千七发布了新的文献求助10
1秒前
故渊完成签到,获得积分10
1秒前
万能图书馆应助过氧化氢采纳,获得20
2秒前
yan完成签到,获得积分10
3秒前
黑黑黑发布了新的文献求助10
3秒前
万能图书馆应助环游水星采纳,获得10
3秒前
阿良完成签到,获得积分10
4秒前
Joe完成签到 ,获得积分10
4秒前
8564523完成签到,获得积分10
5秒前
dandan完成签到,获得积分10
5秒前
单薄的夜南应助Connie采纳,获得10
5秒前
啦啦啦完成签到,获得积分10
5秒前
6秒前
小马过河应助小汤圆采纳,获得10
6秒前
九千七完成签到,获得积分20
6秒前
皮划艇发布了新的文献求助30
6秒前
Firenze完成签到,获得积分20
7秒前
浪浪山第一酷完成签到,获得积分10
7秒前
Dr_R完成签到,获得积分10
7秒前
KDS完成签到,获得积分10
7秒前
8秒前
8秒前
domingo发布了新的文献求助20
9秒前
Cain发布了新的文献求助10
9秒前
小马甲应助车大花采纳,获得10
9秒前
9秒前
wwz发布了新的文献求助30
10秒前
10秒前
666完成签到,获得积分10
10秒前
cheng完成签到,获得积分10
10秒前
yang完成签到,获得积分10
12秒前
能干雁凡发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
keran完成签到,获得积分20
15秒前
哈哈哈应助星河在眼里采纳,获得10
15秒前
quan发布了新的文献求助10
16秒前
zhenzhu完成签到,获得积分10
16秒前
17秒前
ZZR完成签到,获得积分20
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650