Reinforcement learning for demand response: A review of algorithms and modeling techniques

需求响应 强化学习 智能电网 峰值需求 灵活性(工程) 计算机科学 需求模式 暖通空调 需求管理 激励 可再生能源 网格 环境经济学 风险分析(工程) 空调 工程类 经济 人工智能 业务 微观经济学 电气工程 几何学 管理 宏观经济学 数学 机械工程
作者
José R. Vázquez-Canteli,Zoltán Nagy
出处
期刊:Applied Energy [Elsevier]
卷期号:235: 1072-1089 被引量:422
标识
DOI:10.1016/j.apenergy.2018.11.002
摘要

Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然鞅完成签到,获得积分10
刚刚
传奇3应助chaning采纳,获得10
2秒前
CodeCraft应助琪琪琪琪琪采纳,获得30
2秒前
2秒前
酷酷应助zzz采纳,获得10
2秒前
欢喜风完成签到,获得积分10
2秒前
如忆婧年完成签到,获得积分10
3秒前
3秒前
个性的紫菜应助chuyinweilai采纳,获得10
3秒前
仁爱觅风完成签到,获得积分10
4秒前
ShiinoUtaha完成签到 ,获得积分10
5秒前
迷路安白发布了新的文献求助10
6秒前
6秒前
kira717完成签到,获得积分10
6秒前
chen完成签到,获得积分10
8秒前
hxnz2001完成签到,获得积分10
8秒前
哭泣的缘郡完成签到 ,获得积分10
8秒前
joyi发布了新的文献求助10
8秒前
10秒前
上官若男应助march采纳,获得10
10秒前
可乐完成签到,获得积分10
11秒前
大气的雅容完成签到,获得积分20
11秒前
11秒前
11秒前
852发布了新的文献求助10
14秒前
lwl发布了新的文献求助10
14秒前
默默纲发布了新的文献求助30
14秒前
领导范儿应助wan采纳,获得10
14秒前
QiJiLuLu完成签到,获得积分10
15秒前
不配.应助儒雅沛凝采纳,获得10
19秒前
烟雾完成签到,获得积分10
20秒前
刘大大完成签到,获得积分10
20秒前
wanidamm完成签到,获得积分10
20秒前
21秒前
万能图书馆应助暗中观察采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
22秒前
wang研通应助科研通管家采纳,获得30
22秒前
攀攀应助科研通管家采纳,获得10
22秒前
xjcy应助科研通管家采纳,获得10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194