Reinforcement learning for demand response: A review of algorithms and modeling techniques

需求响应 强化学习 智能电网 峰值需求 灵活性(工程) 计算机科学 需求模式 暖通空调 需求管理 激励 可再生能源 网格 环境经济学 风险分析(工程) 空调 工程类 经济 人工智能 业务 微观经济学 电气工程 几何学 管理 宏观经济学 数学 机械工程
作者
José R. Vázquez-Canteli,Zoltán Nagy
出处
期刊:Applied Energy [Elsevier]
卷期号:235: 1072-1089 被引量:422
标识
DOI:10.1016/j.apenergy.2018.11.002
摘要

Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观以松完成签到,获得积分10
1秒前
Owen应助花海采纳,获得10
3秒前
OLDBLOW完成签到 ,获得积分10
3秒前
淡然的奎完成签到,获得积分10
4秒前
4秒前
左丘冬寒完成签到,获得积分10
5秒前
gody完成签到,获得积分10
5秒前
溜溜蛋完成签到,获得积分10
6秒前
吃瓜米吃瓜米完成签到 ,获得积分10
6秒前
Crystal完成签到 ,获得积分10
7秒前
8秒前
JamesPei应助蚂蚁Y嘿采纳,获得10
8秒前
失眠的向日葵完成签到 ,获得积分10
10秒前
坦率的之卉完成签到,获得积分20
12秒前
科研通AI6.1应助欣宝采纳,获得10
12秒前
13秒前
13秒前
livra1058完成签到,获得积分10
13秒前
砚木完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
73Jennie123完成签到,获得积分10
15秒前
动力小滋完成签到,获得积分10
15秒前
无名应助离子键采纳,获得20
17秒前
17秒前
17秒前
悲伤的小卷毛完成签到,获得积分10
18秒前
20秒前
rj完成签到,获得积分10
20秒前
20秒前
老实的乐儿完成签到 ,获得积分10
20秒前
21秒前
Owen应助Mayeleven采纳,获得30
25秒前
25秒前
蚂蚁Y嘿发布了新的文献求助10
26秒前
冰蓝色的忧伤完成签到,获得积分10
26秒前
allenice完成签到,获得积分0
27秒前
27秒前
宇宙星河完成签到,获得积分10
30秒前
30秒前
gelinhao完成签到,获得积分0
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224