亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement learning for demand response: A review of algorithms and modeling techniques

需求响应 强化学习 智能电网 峰值需求 灵活性(工程) 计算机科学 需求模式 暖通空调 需求管理 激励 可再生能源 网格 环境经济学 风险分析(工程) 空调 工程类 经济 人工智能 业务 微观经济学 电气工程 几何学 管理 宏观经济学 数学 机械工程
作者
José R. Vázquez-Canteli,Zoltán Nagy
出处
期刊:Applied Energy [Elsevier]
卷期号:235: 1072-1089 被引量:422
标识
DOI:10.1016/j.apenergy.2018.11.002
摘要

Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
观澜发布了新的文献求助10
刚刚
谷雨发布了新的文献求助10
3秒前
王波完成签到 ,获得积分10
5秒前
RE完成签到 ,获得积分10
6秒前
7秒前
7秒前
11秒前
12秒前
12秒前
星辰大海应助121231233采纳,获得10
13秒前
16秒前
王哈哈发布了新的文献求助10
16秒前
谢小强发布了新的文献求助10
20秒前
科研q完成签到 ,获得积分10
22秒前
王哈哈完成签到,获得积分10
28秒前
满意的又蓝完成签到,获得积分10
32秒前
34秒前
34秒前
37秒前
雨田发布了新的文献求助10
39秒前
共享精神应助小线团黑桃采纳,获得10
40秒前
43秒前
46秒前
121231233发布了新的文献求助10
49秒前
50秒前
哎哟完成签到,获得积分10
51秒前
张笑圣发布了新的文献求助10
54秒前
年少丶完成签到,获得积分10
58秒前
满意的柏柳完成签到 ,获得积分10
58秒前
田様应助lhyxz采纳,获得10
1分钟前
科yt完成签到,获得积分10
1分钟前
嘟嘟雯完成签到 ,获得积分10
1分钟前
科研修沟完成签到 ,获得积分10
1分钟前
张笑圣发布了新的文献求助10
1分钟前
Asteria发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
优美紫槐应助科研通管家采纳,获得10
1分钟前
壮观大炮完成签到,获得积分10
1分钟前
希望天下0贩的0应助Asteria采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606532
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866603
捐赠科研通 4706434
什么是DOI,文献DOI怎么找? 2542743
邀请新用户注册赠送积分活动 1508159
关于科研通互助平台的介绍 1472276