Reinforcement learning for demand response: A review of algorithms and modeling techniques

需求响应 强化学习 智能电网 峰值需求 灵活性(工程) 计算机科学 需求模式 暖通空调 需求管理 激励 可再生能源 网格 环境经济学 风险分析(工程) 空调 工程类 经济 人工智能 业务 微观经济学 电气工程 几何学 管理 宏观经济学 数学 机械工程
作者
José R. Vázquez-Canteli,Zoltán Nagy
出处
期刊:Applied Energy [Elsevier]
卷期号:235: 1072-1089 被引量:422
标识
DOI:10.1016/j.apenergy.2018.11.002
摘要

Buildings account for about 40% of the global energy consumption. Renewable energy resources are one possibility to mitigate the dependence of residential buildings on the electrical grid. However, their integration into the existing grid infrastructure must be done carefully to avoid instability, and guarantee availability and security of supply. Demand response, or demand-side management, improves grid stability by increasing demand flexibility, and shifts peak demand towards periods of peak renewable energy generation by providing consumers with economic incentives. This paper reviews the use of reinforcement learning, a machine learning algorithm, for demand response applications in the smart grid. Reinforcement learning has been utilized to control diverse energy systems such as electric vehicles, heating ventilation and air conditioning (HVAC) systems, smart appliances, or batteries. The future of demand response greatly depends on its ability to prevent consumer discomfort and integrate human feedback into the control loop. Reinforcement learning is a potentially model-free algorithm that can adapt to its environment, as well as to human preferences by directly integrating user feedback into its control logic. Our review shows that, although many papers consider human comfort and satisfaction, most of them focus on single-agent systems with demand-independent electricity prices and a stationary environment. However, when electricity prices are modelled as demand-dependent variables, there is a risk of shifting the peak demand rather than shaving it. We identify a need to further explore reinforcement learning to coordinate multi-agent systems that can participate in demand response programs under demand-dependent electricity prices. Finally, we discuss directions for future research, e.g., quantifying how RL could adapt to changing urban conditions such as building refurbishment and urban or population growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得50
刚刚
李健应助科研通管家采纳,获得10
刚刚
Dream发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
聂落雁完成签到,获得积分10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
han完成签到,获得积分10
2秒前
2秒前
典雅的砖家完成签到,获得积分10
2秒前
2秒前
沉静傲霜完成签到,获得积分10
3秒前
小蘑菇应助话家采纳,获得10
3秒前
文静老三发布了新的文献求助10
3秒前
Jerry完成签到,获得积分10
3秒前
Stella应助jasonhuang采纳,获得30
4秒前
在水一方应助开放的书芹采纳,获得10
4秒前
4秒前
三饱两倒完成签到,获得积分10
4秒前
NJD发布了新的文献求助10
4秒前
Sy关闭了Sy文献求助
5秒前
5秒前
5秒前
jiayue发布了新的文献求助10
5秒前
迭代发布了新的文献求助10
6秒前
6秒前
6秒前
xiaofeifantasy应助沈欣然采纳,获得10
6秒前
kobayashi发布了新的文献求助10
6秒前
starts完成签到,获得积分10
6秒前
6秒前
xfya完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313