Two-dimensional materials for lithium/sodium-ion capacitors

材料科学 MXenes公司 电容器 超级电容器 电池(电) 电极 储能 锂(药物) 纳米技术 电解质 电化学 工程物理 光电子学 电气工程 电压 功率(物理) 化学 医学 物理 工程类 内分泌学 物理化学 量子力学
作者
Daliang Han,Jun Zhang,Zhe Weng,Debin Kong,Ying Tao,Fei Ding,Dianbo Ruan,Quan‐Hong Yang
出处
期刊:Materials Today Energy [Elsevier]
卷期号:11: 30-45 被引量:98
标识
DOI:10.1016/j.mtener.2018.10.013
摘要

Lithium-ion capacitors (LICs), constructed with a battery-type electrode and capacitor-type electrode in electrolytes containing a Li-salt, are designed to bridge the gap between lithium-ion batteries (LIBs) and supercapacitors (SCs). Such a configuration gives LICs a high energy density, high power density and long-term cycling stability. Hence, LICs are regarded as one of the most promising alternatives to present electrochemical energy storage (EES) devices. As the most important components of LICs, extensive efforts have been made to develop novel electrode materials during the past two decades. However, some critical issues including a kinetic imbalance between a battery-type electrode and a capacitor-type electrode, unsatisfactory energy and power densities and cycling stability still need to be effectively addressed. Two-dimensional (2D) materials, because of the unique advantages, including a high specific surface area, excellent electrical conductivity, a tunable layered structure, rich electrochemical active sites and mechanical flexibility, have been used as electrode materials and additives for LICs and great progress has been made in recent years. In this review, we summarize the recent progress in the use of 2D materials, including graphene, transition metal dichalcogenides (TMDs) and MXenes, as battery-type electrode materials, capacitor-type electrode materials and additives in LICs. The typical application of 2D materials in sodium-ion capacitors (NICs) is also briefly reviewed. Finally, an outlook for the future researches on achieving higher-performance LICs and NICs is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助露露采纳,获得10
1秒前
wzZ完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
合适映之完成签到,获得积分10
2秒前
洁净的嘉熙完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
lan发布了新的文献求助10
3秒前
Shelton发布了新的文献求助10
3秒前
细腻的君浩关注了科研通微信公众号
4秒前
Kanas完成签到,获得积分10
4秒前
4秒前
cen钱完成签到,获得积分20
5秒前
wure10发布了新的文献求助10
5秒前
wzZ发布了新的文献求助10
6秒前
YY发布了新的文献求助10
6秒前
假装学霸发布了新的文献求助10
6秒前
又双叒伊发布了新的文献求助10
7秒前
bkagyin应助石文采纳,获得10
8秒前
斯文败类应助刘璇1采纳,获得10
8秒前
Peng发布了新的文献求助10
8秒前
微笑傥完成签到,获得积分20
8秒前
茶博士完成签到,获得积分10
9秒前
美君发布了新的文献求助10
9秒前
10秒前
欣喜思萱发布了新的文献求助10
10秒前
kyttytk完成签到,获得积分10
11秒前
11秒前
kk关闭了kk文献求助
11秒前
儒雅寻菱发布了新的文献求助20
11秒前
假装学霸完成签到,获得积分10
12秒前
12秒前
levi完成签到,获得积分10
12秒前
akmdh完成签到,获得积分10
12秒前
科研通AI5应助星月采纳,获得10
12秒前
朱滴滴发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383