Pore structure classification and logging evaluation method for carbonate reservoirs: A case study from an oilfield in the Middle East

登录中 测井 碳酸盐 多孔性 地质学 地层评价 磁导率 石油工程 矿物学 材料科学 岩土工程 化学 生态学 冶金 生物 生物化学
作者
Yi Han,Chong Zhang,Zhansong Zhang,Hongyue Zhang,Lie Chen
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:41 (14): 1701-1715 被引量:9
标识
DOI:10.1080/15567036.2018.1549145
摘要

Based on the data of 121 thin sections, 24 mercury injection and physical properties of the carbonate reservoir in A oilfield of the Middle East, the reservoir in the study area is divided into four pore-throat systems by analyzing the pore-throat volume verses permeability-contribution curve of core mercury injection and corresponding depth NMR logging data. Taking into account the contribution of each pore-throat system to the rock, a new pore structure parameter P based on NMR logging data is proposed. On this basis, the P and flow porosity calculated from NMR logging data are used as variables, and the pore structure of carbonate reservoirs is divided into four types by using the K-means clustering method in combination with the characteristics of capillary pressure curves and thin sections. With the input of NMR logging data and conventional logging data, the classification model of pore structure is established by Rotation Forest algorithm. The accuracy of the classification model based on NMR logging is 98.56%, and the accuracy of the classification model based on conventional logging is 89.9%. Compared with the Random Forest algorithm and the Fisher discriminant method, the Rotation Forest algorithm has high prediction accuracy and strong stability. The research shows that the pore structure classification method proposed in this paper is in good agreement with the interpretation results, which can provide some reference value for finding effective reservoirs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
i-bear发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
年轻半雪发布了新的文献求助10
刚刚
852应助直率新柔采纳,获得10
1秒前
2秒前
智博36发布了新的文献求助10
2秒前
wyx完成签到,获得积分10
2秒前
Ftucyctucutct完成签到,获得积分10
2秒前
ffan发布了新的文献求助10
3秒前
桐桐应助xin采纳,获得10
3秒前
3秒前
学术小子发布了新的文献求助10
3秒前
4秒前
俊逸绝音完成签到,获得积分10
4秒前
hl268完成签到,获得积分10
4秒前
WJJ发布了新的文献求助10
5秒前
科研通AI2S应助孤独的雪一采纳,获得10
5秒前
上官若男应助孙湛舒采纳,获得30
6秒前
6秒前
chenyuyuan完成签到,获得积分10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
tt完成签到,获得积分10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
6秒前
wop111应助科研通管家采纳,获得20
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
华仔应助桔梗采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
所所应助阿白采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867581
求助须知:如何正确求助?哪些是违规求助? 4159580
关于积分的说明 12898265
捐赠科研通 3913603
什么是DOI,文献DOI怎么找? 2149390
邀请新用户注册赠送积分活动 1167824
关于科研通互助平台的介绍 1070259