纤维素
材料科学
细菌纤维素
表面改性
化学工程
工程类
作者
Xinhua Liu,Yong Li,Zhaoyang Chu,Yinchun Fang,Hongliang Zheng
标识
DOI:10.1177/2280800018757337
摘要
Bacterial cellulose (BC) aerogels have received more and more attention due to their renewability, biodegradability and other excellent properties in recent years. Modification of BC aerogels using different methods would expand their applications. However, many problems exist for these modifications, such as a low grafting ratio, the larger dosage of metal catalyst required and so on. Activator regeneration by electron transfer (ARGET) for atom transfer radical polymerization (ATRP) is a novel ATRP method which could significantly reduce the amount of metal catalyst required and achieve a high grafting ratio.Novel nanostructured BC aerogels containing epoxy groups were prepared by the ARGET ATRP method. BC aerogels were functionalized with initiating sites by reaction with 2-bromoisobutyryl bromide (BiBBr), and followed by ARGET ATRP reaction with glycidyl methacrylate (GMA) which was catalyzed by copper(II) bromide (CuBr2) and N,N,N',N,'N"-pentamethyldiethylenetriamine (PMDETA), and then reduced by vitamin C. BC aerogels containing epoxy groups (BC-g-PGMA) were obtained after freeze-drying. The influence factors of the solvent ratio of N,N-dimethyl formamide (DMF)/toluene, monomer concentration, the concentration of CuBr2, the molar ratio of vitamin C (Vc)/CuBr2,reaction temperature and time on the grafting ratio were investigated.The results showed that the optimal DMF and toluene volume ratio was 2:1, the optimal monomer and CuBr2 concentration were 2 mol/l and 1.5 mmol/l. The optimal molar ratio of PMDETA/CuBr2 and Vc/CuBr2 were 4:1 and 1:1. The optimal reaction temperature and time were 60°C and 9 h. Scanning electron microscopy (SEM) images showed that GMA was strongly adhered onto the surface and inside of the BC pellicle.GMA was self-grown on the BC surface and achieved the high grafting ratio of 1052.7% under optimal conditions. The BC-g-PGMA aerogels containing the epoxy groups will provide wider application prospects in drug release, enzyme fixed, functional materials and other fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI