亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MFB-CBRNN: A Hybrid Network for MI Detection Using 12-Lead ECGs

过度拟合 计算机科学 卷积神经网络 特征(语言学) 联营 人工智能 模式识别(心理学) 辍学(神经网络) 特征提取 人工神经网络 机器学习 语言学 哲学
作者
Wenhan Liu,Fei Wang,Qijun Huang,Sheng Chang,Hao Wang,Jin He
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 503-514 被引量:107
标识
DOI:10.1109/jbhi.2019.2910082
摘要

This paper proposes a novel hybrid network named multiple-feature-branch convolutional bidirectional recurrent neural network (MFB-CBRNN) for myocardial infarction (MI) detection using 12-lead ECGs. The model efficiently combines convolutional neural network-based and recurrent neural network-based structures. Each feature branch consists of several one-dimensional convolutional and pooling layers, corresponding to a certain lead. All the feature branches are independent from each other, which are utilized to learn the diverse features from different leads. Moreover, a bidirectional long short term memory network is employed to summarize all the feature branches. Its good ability of feature aggregation has been proved by the experiments. Furthermore, the paper develops a novel optimization method, lead random mask (LRM), to alleviate overfitting and implement an implicit ensemble like dropout. The model with LRM can achieve a more accurate MI detection. Class-based and subject-based fivefold cross validations are both carried out using Physikalisch-Technische Bundesanstalt diagnostic database. Totally, there are 148 MI and 52 healthy control subjects involved in the experiments. The MFB-CBRNN achieves an overall accuracy of 99.90% in class-based experiments, and an overall accuracy of 93.08% in subject-based experiments. Compared with other related studies, our algorithm achieves a comparable or even better result on MI detection. Therefore, the MFB-CBRNN has a good generalization capacity and is suitable for MI detection using 12-lead ECGs. It has a potential to assist the real-world MI diagnostics and reduce the burden of cardiologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高海龙完成签到 ,获得积分10
43秒前
ding应助荆荆采纳,获得10
1分钟前
1分钟前
荆荆发布了新的文献求助10
1分钟前
pjy完成签到 ,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
李健的小迷弟应助guan采纳,获得10
2分钟前
3分钟前
3分钟前
科研通AI6应助Innogen采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
3分钟前
一道光发布了新的文献求助10
3分钟前
深情安青应助一道光采纳,获得30
3分钟前
斯文的硬币完成签到 ,获得积分10
4分钟前
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
4分钟前
guan完成签到,获得积分10
4分钟前
guan发布了新的文献求助10
4分钟前
谭凯文完成签到 ,获得积分10
4分钟前
海豚有海完成签到 ,获得积分10
5分钟前
共享精神应助dddjs采纳,获得10
5分钟前
Yini应助科研通管家采纳,获得30
5分钟前
Yini应助科研通管家采纳,获得30
5分钟前
彭于晏应助科研通管家采纳,获得10
5分钟前
5分钟前
dddjs发布了新的文献求助10
5分钟前
dddjs完成签到,获得积分10
6分钟前
6分钟前
hihi完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561550
求助须知:如何正确求助?哪些是违规求助? 4646648
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490543
关于科研通互助平台的介绍 1461566