亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MFB-CBRNN: A Hybrid Network for MI Detection Using 12-Lead ECGs

过度拟合 计算机科学 卷积神经网络 特征(语言学) 联营 人工智能 模式识别(心理学) 辍学(神经网络) 特征提取 人工神经网络 机器学习 语言学 哲学
作者
Wenhan Liu,Fei Wang,Qijun Huang,Sheng Chang,Hao Wang,Jin He
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 503-514 被引量:107
标识
DOI:10.1109/jbhi.2019.2910082
摘要

This paper proposes a novel hybrid network named multiple-feature-branch convolutional bidirectional recurrent neural network (MFB-CBRNN) for myocardial infarction (MI) detection using 12-lead ECGs. The model efficiently combines convolutional neural network-based and recurrent neural network-based structures. Each feature branch consists of several one-dimensional convolutional and pooling layers, corresponding to a certain lead. All the feature branches are independent from each other, which are utilized to learn the diverse features from different leads. Moreover, a bidirectional long short term memory network is employed to summarize all the feature branches. Its good ability of feature aggregation has been proved by the experiments. Furthermore, the paper develops a novel optimization method, lead random mask (LRM), to alleviate overfitting and implement an implicit ensemble like dropout. The model with LRM can achieve a more accurate MI detection. Class-based and subject-based fivefold cross validations are both carried out using Physikalisch-Technische Bundesanstalt diagnostic database. Totally, there are 148 MI and 52 healthy control subjects involved in the experiments. The MFB-CBRNN achieves an overall accuracy of 99.90% in class-based experiments, and an overall accuracy of 93.08% in subject-based experiments. Compared with other related studies, our algorithm achieves a comparable or even better result on MI detection. Therefore, the MFB-CBRNN has a good generalization capacity and is suitable for MI detection using 12-lead ECGs. It has a potential to assist the real-world MI diagnostics and reduce the burden of cardiologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eri完成签到,获得积分10
10秒前
大胆的碧菡完成签到,获得积分10
11秒前
wangji完成签到,获得积分20
16秒前
21秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
情怀应助坚强的唇膏采纳,获得10
26秒前
27秒前
余念安完成签到 ,获得积分10
30秒前
Dietetykza5zl发布了新的文献求助10
32秒前
安安完成签到 ,获得积分10
36秒前
36秒前
Felix发布了新的文献求助10
39秒前
Jenny发布了新的文献求助30
40秒前
哇呀呀完成签到 ,获得积分10
41秒前
42秒前
康康XY完成签到 ,获得积分10
48秒前
49秒前
49秒前
lyw发布了新的文献求助10
53秒前
Jenny完成签到,获得积分10
58秒前
58秒前
丘比特应助Dietetykza5zl采纳,获得10
1分钟前
桃子e发布了新的文献求助10
1分钟前
丸子完成签到 ,获得积分10
1分钟前
徐cc完成签到 ,获得积分10
1分钟前
搜集达人应助tRNA采纳,获得10
1分钟前
1分钟前
Criminology34应助谨慎的夏采纳,获得10
1分钟前
yuu完成签到 ,获得积分10
1分钟前
iman完成签到,获得积分10
1分钟前
谨慎的夏完成签到,获得积分10
1分钟前
yangzai完成签到 ,获得积分0
1分钟前
yttttt发布了新的文献求助10
1分钟前
李爱国应助桃子e采纳,获得10
1分钟前
cnspower应助开心小诺采纳,获得10
2分钟前
彭于晏应助宇文宛菡采纳,获得10
2分钟前
七大洋的风完成签到,获得积分10
2分钟前
2分钟前
喝橙汁儿吗完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788218
求助须知:如何正确求助?哪些是违规求助? 5705246
关于积分的说明 15473310
捐赠科研通 4916338
什么是DOI,文献DOI怎么找? 2646295
邀请新用户注册赠送积分活动 1593951
关于科研通互助平台的介绍 1548328