亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MFB-CBRNN: A Hybrid Network for MI Detection Using 12-Lead ECGs

过度拟合 计算机科学 卷积神经网络 特征(语言学) 联营 人工智能 模式识别(心理学) 辍学(神经网络) 特征提取 人工神经网络 机器学习 语言学 哲学
作者
Wenhan Liu,Fei Wang,Qijun Huang,Sheng Chang,Hao Wang,Jin He
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 503-514 被引量:107
标识
DOI:10.1109/jbhi.2019.2910082
摘要

This paper proposes a novel hybrid network named multiple-feature-branch convolutional bidirectional recurrent neural network (MFB-CBRNN) for myocardial infarction (MI) detection using 12-lead ECGs. The model efficiently combines convolutional neural network-based and recurrent neural network-based structures. Each feature branch consists of several one-dimensional convolutional and pooling layers, corresponding to a certain lead. All the feature branches are independent from each other, which are utilized to learn the diverse features from different leads. Moreover, a bidirectional long short term memory network is employed to summarize all the feature branches. Its good ability of feature aggregation has been proved by the experiments. Furthermore, the paper develops a novel optimization method, lead random mask (LRM), to alleviate overfitting and implement an implicit ensemble like dropout. The model with LRM can achieve a more accurate MI detection. Class-based and subject-based fivefold cross validations are both carried out using Physikalisch-Technische Bundesanstalt diagnostic database. Totally, there are 148 MI and 52 healthy control subjects involved in the experiments. The MFB-CBRNN achieves an overall accuracy of 99.90% in class-based experiments, and an overall accuracy of 93.08% in subject-based experiments. Compared with other related studies, our algorithm achieves a comparable or even better result on MI detection. Therefore, the MFB-CBRNN has a good generalization capacity and is suitable for MI detection using 12-lead ECGs. It has a potential to assist the real-world MI diagnostics and reduce the burden of cardiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
小马甲应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
12秒前
endure完成签到,获得积分20
15秒前
草莓熊1215完成签到 ,获得积分10
18秒前
19秒前
疯狂的寻琴完成签到 ,获得积分10
34秒前
39秒前
46秒前
48秒前
artemis发布了新的文献求助10
50秒前
55秒前
endure发布了新的文献求助10
1分钟前
1分钟前
zyj发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Sci发布了新的文献求助10
1分钟前
传奇3应助贺俊龙采纳,获得10
1分钟前
大模型应助zyj采纳,获得10
2分钟前
我是老大应助江锦雯采纳,获得10
2分钟前
佳宝(不可以喝但能吃完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
江锦雯发布了新的文献求助10
2分钟前
Sci完成签到,获得积分10
2分钟前
2分钟前
贺俊龙发布了新的文献求助10
2分钟前
Owen应助靓丽的魔镜采纳,获得10
2分钟前
LUYAO1完成签到 ,获得积分10
2分钟前
2分钟前
Auralis完成签到 ,获得积分10
2分钟前
Tiamo发布了新的文献求助10
2分钟前
飞翔的荷兰人完成签到,获得积分10
2分钟前
papi完成签到 ,获得积分10
3分钟前
3分钟前
852应助江锦雯采纳,获得10
3分钟前
Ansel_Schneider完成签到,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232745
求助须知:如何正确求助?哪些是违规求助? 4401980
关于积分的说明 13699520
捐赠科研通 4268389
什么是DOI,文献DOI怎么找? 2342581
邀请新用户注册赠送积分活动 1339573
关于科研通互助平台的介绍 1296302