MFB-CBRNN: A Hybrid Network for MI Detection Using 12-Lead ECGs

过度拟合 计算机科学 卷积神经网络 特征(语言学) 联营 人工智能 模式识别(心理学) 辍学(神经网络) 特征提取 人工神经网络 机器学习 语言学 哲学
作者
Wenhan Liu,Fei Wang,Qijun Huang,Sheng Chang,Hao Wang,Jin He
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 503-514 被引量:107
标识
DOI:10.1109/jbhi.2019.2910082
摘要

This paper proposes a novel hybrid network named multiple-feature-branch convolutional bidirectional recurrent neural network (MFB-CBRNN) for myocardial infarction (MI) detection using 12-lead ECGs. The model efficiently combines convolutional neural network-based and recurrent neural network-based structures. Each feature branch consists of several one-dimensional convolutional and pooling layers, corresponding to a certain lead. All the feature branches are independent from each other, which are utilized to learn the diverse features from different leads. Moreover, a bidirectional long short term memory network is employed to summarize all the feature branches. Its good ability of feature aggregation has been proved by the experiments. Furthermore, the paper develops a novel optimization method, lead random mask (LRM), to alleviate overfitting and implement an implicit ensemble like dropout. The model with LRM can achieve a more accurate MI detection. Class-based and subject-based fivefold cross validations are both carried out using Physikalisch-Technische Bundesanstalt diagnostic database. Totally, there are 148 MI and 52 healthy control subjects involved in the experiments. The MFB-CBRNN achieves an overall accuracy of 99.90% in class-based experiments, and an overall accuracy of 93.08% in subject-based experiments. Compared with other related studies, our algorithm achieves a comparable or even better result on MI detection. Therefore, the MFB-CBRNN has a good generalization capacity and is suitable for MI detection using 12-lead ECGs. It has a potential to assist the real-world MI diagnostics and reduce the burden of cardiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fiona完成签到 ,获得积分10
4秒前
小熊完成签到 ,获得积分10
5秒前
6秒前
小墨墨完成签到 ,获得积分10
11秒前
16秒前
忧伤的二锅头完成签到 ,获得积分10
16秒前
从容映易完成签到,获得积分10
16秒前
无限的含羞草完成签到,获得积分10
16秒前
leo完成签到 ,获得积分10
17秒前
20秒前
小蘑菇应助不安的鸡翅采纳,获得10
21秒前
卉不卉完成签到,获得积分10
31秒前
32秒前
WQ发布了新的文献求助10
35秒前
卉不卉发布了新的文献求助10
38秒前
jkaaa完成签到,获得积分10
39秒前
jenningseastera应助WQ采纳,获得10
44秒前
underway发布了新的文献求助10
47秒前
xinqianying完成签到 ,获得积分10
49秒前
WQ完成签到,获得积分20
52秒前
协和_子鱼完成签到,获得积分10
54秒前
56秒前
苦行僧完成签到 ,获得积分10
1分钟前
英俊的铭应助feng采纳,获得10
1分钟前
1分钟前
xiaoyi完成签到 ,获得积分10
1分钟前
馅饼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
feng发布了新的文献求助10
1分钟前
Lorain完成签到,获得积分20
1分钟前
wmy发布了新的文献求助10
1分钟前
where完成签到,获得积分10
1分钟前
孟寐以求完成签到 ,获得积分10
1分钟前
Titi完成签到 ,获得积分10
1分钟前
where发布了新的文献求助10
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
杨yang完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251