MFB-CBRNN: A Hybrid Network for MI Detection Using 12-Lead ECGs

过度拟合 计算机科学 卷积神经网络 特征(语言学) 联营 人工智能 模式识别(心理学) 辍学(神经网络) 特征提取 人工神经网络 机器学习 语言学 哲学
作者
Wenhan Liu,Fei Wang,Qijun Huang,Sheng Chang,Hao Wang,Jin He
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 503-514 被引量:107
标识
DOI:10.1109/jbhi.2019.2910082
摘要

This paper proposes a novel hybrid network named multiple-feature-branch convolutional bidirectional recurrent neural network (MFB-CBRNN) for myocardial infarction (MI) detection using 12-lead ECGs. The model efficiently combines convolutional neural network-based and recurrent neural network-based structures. Each feature branch consists of several one-dimensional convolutional and pooling layers, corresponding to a certain lead. All the feature branches are independent from each other, which are utilized to learn the diverse features from different leads. Moreover, a bidirectional long short term memory network is employed to summarize all the feature branches. Its good ability of feature aggregation has been proved by the experiments. Furthermore, the paper develops a novel optimization method, lead random mask (LRM), to alleviate overfitting and implement an implicit ensemble like dropout. The model with LRM can achieve a more accurate MI detection. Class-based and subject-based fivefold cross validations are both carried out using Physikalisch-Technische Bundesanstalt diagnostic database. Totally, there are 148 MI and 52 healthy control subjects involved in the experiments. The MFB-CBRNN achieves an overall accuracy of 99.90% in class-based experiments, and an overall accuracy of 93.08% in subject-based experiments. Compared with other related studies, our algorithm achieves a comparable or even better result on MI detection. Therefore, the MFB-CBRNN has a good generalization capacity and is suitable for MI detection using 12-lead ECGs. It has a potential to assist the real-world MI diagnostics and reduce the burden of cardiologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
青柠完成签到 ,获得积分10
6秒前
看文献完成签到,获得积分10
6秒前
11秒前
震动的鹏飞完成签到 ,获得积分10
11秒前
13秒前
洁净的幼珊完成签到,获得积分10
14秒前
简单应助科研通管家采纳,获得10
30秒前
萧萧应助科研通管家采纳,获得10
30秒前
shouz应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
简单应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
zhixue2025完成签到 ,获得积分10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
简单应助科研通管家采纳,获得10
30秒前
ycd完成签到,获得积分10
30秒前
31秒前
YufeiLiu发布了新的文献求助10
39秒前
Damon完成签到 ,获得积分10
39秒前
缺口口完成签到 ,获得积分10
41秒前
dddd完成签到 ,获得积分10
43秒前
loga80完成签到,获得积分0
44秒前
44秒前
zhouyms完成签到,获得积分10
45秒前
赘婿应助无所谓的啦采纳,获得10
46秒前
情怀应助无所谓的啦采纳,获得10
46秒前
ding应助无所谓的啦采纳,获得10
46秒前
李健应助无所谓的啦采纳,获得10
46秒前
46秒前
46秒前
AM发布了新的文献求助10
49秒前
49秒前
幸福妙柏完成签到 ,获得积分10
51秒前
乔杰完成签到 ,获得积分10
57秒前
BAI_1完成签到,获得积分10
59秒前
32429606完成签到 ,获得积分10
1分钟前
顾矜应助fengw420采纳,获得10
1分钟前
临风浩歌完成签到 ,获得积分10
1分钟前
拾壹完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481712
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559