LiFexMn1−xPO4: A cathode for lithium-ion batteries

阴极 电化学 锂(药物) 热重分析 氧化还原 透射电子显微镜 纳米孔 扫描电子显微镜 离子 材料科学 化学工程 电极 纳米技术 化学 工程类 医学 物理化学 冶金 复合材料 有机化学 内分泌学
作者
Jian Hong,Feng Wang,Xiaoliang Wang,Jason Graetz
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:196 (7): 3659-3663 被引量:124
标识
DOI:10.1016/j.jpowsour.2010.12.045
摘要

The high redox potential of LiMnPO4, ∼4.0 vs. (Li+/Li), and its high theoretical capacity of 170 mAh g−1 makes it a promising candidate to replace LiCoO2 as the cathode in Li-ion batteries. However, it has attracted little attention because of its severe kinetic problems during cycling. Introducing iron into crystalline LiMnPO4 generates a solid solution of LiFexMn1−xPO4 and increases kinetics; hence, there is much interest in determining the Fe-to-Mn ratio that will optimize electrochemical performance. To this end, we synthesized a series of nanoporous LiFexMn1−xPO4 compounds (with x = 0, 0.05, 0.1, 0.15, and 0.2), using an inexpensive solid-state reaction. The electrodes were characterized using X-ray diffraction and energy-dispersive spectroscopy to examine their crystal structure and elemental distribution. Scanning-, tunneling-, and transmission-electron microscopy (viz., SEM, STEM, and TEM) were employed to characterize the micromorphology of these materials; the carbon content was analyzed by thermogravimetric analyses (TGAs). We demonstrate that the electrochemical performance of LiFexMn1−xPO4 rises continuously with increasing iron content. In situ synchrotron studies during cycling revealed a reversible structural change when lithium is inserted and extracted from the crystal structure. Further, introducing 20% iron (e.g., LiFe0.2Mn0.8PO4) resulted in a promising capacity (138 mAh g−1 at C/10), comparable to that previously reported for nano-LiMnPO4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
满意的天完成签到 ,获得积分10
1秒前
luoshiwen完成签到,获得积分10
1秒前
落寞的觅柔完成签到,获得积分10
3秒前
4秒前
LUNWENREQUEST发布了新的文献求助10
4秒前
5秒前
6秒前
123cxj完成签到,获得积分10
9秒前
CO2发布了新的文献求助10
9秒前
summer发布了新的文献求助10
9秒前
10秒前
Xx.发布了新的文献求助10
10秒前
大大关注了科研通微信公众号
10秒前
稚祎完成签到 ,获得积分10
10秒前
10秒前
CodeCraft应助东东采纳,获得10
11秒前
12秒前
叽里咕噜完成签到 ,获得积分10
13秒前
田様应助zccc采纳,获得10
14秒前
隐形的雁完成签到,获得积分10
14秒前
追寻的秋玲完成签到,获得积分10
15秒前
李繁蕊发布了新的文献求助10
15秒前
16秒前
舒心的紫雪完成签到 ,获得积分10
17秒前
17秒前
19秒前
19秒前
20秒前
不上课不行完成签到,获得积分10
21秒前
再干一杯完成签到,获得积分10
21秒前
22秒前
汉堡包应助rudjs采纳,获得10
23秒前
23秒前
zsyzxb发布了新的文献求助10
24秒前
东东发布了新的文献求助10
24秒前
zena92发布了新的文献求助10
25秒前
锤子米完成签到,获得积分10
25秒前
25秒前
赤练仙子完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808