Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China

浊度 构造盆地 中分辨率成像光谱仪 环境科学 水文学(农业) 流域 长江 地表水 中国 地质学 海洋学 卫星 地理 地貌学 环境工程 地图学 工程类 航空航天工程 考古 岩土工程
作者
Xuejiao Hou,Lian Feng,Hongtao Duan,Xiaoling Chen,Deyong Sun,Kun� Shi
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:190: 107-121 被引量:196
标识
DOI:10.1016/j.rse.2016.12.006
摘要

The Middle and Lower Yangtze River (MLY) basin holds the most freshwater in East Asia; however, the conditions of basin-scale water turbidity remain unknown. In this work, a remote sensing algorithm was developed to estimate the concentrations of the total suspended sediments (TSS) in large lakes and reservoirs over the MLY basin and was based on a band ratio between 555 nm and 645 nm of the atmospherically corrected surface reflectance of the Moderate Resolution Imaging Spectroradiometer (MODIS). In situ samples used to calibrate the algorithm were collected from 58 lakes and reservoirs with a TSS range of 1 to 300 mg L− 1, and the uncertainty of this algorithm was 30–40%. The algorithm was subsequently applied to a total of 102 lakes and reservoirs located in the MLY basin to derive TSS maps from 2000 to 2014 at a 250 m spatial resolution, and the first comprehensive document of the TSS distributions and dynamics of large inland waters of the MLY basin was created. The seasonal patterns among the selected water bodies were similar, with the largest TSS concentrations occurring in the first and fourth quarters in a year and the lowest values occurring in the third quarter. In contrast, spatial heterogeneities were revealed by the 15-year long-term mean TSS climatology information. Although most lakes downstream of Poyang Lake were turbid with 15-year TSS climatology values of 45–100 mg L− 1, waters between Poyang and Doting Lake were relatively clearer with TSS climatology values of 15–45 mg L− 1, and the clearest waters (< 15 mg L− 1) were found in reservoirs. The turbidity of 64.5% (e.g., 49/76) for lakes in Class II exhibited a decreasing trend over the 15-year period, and the Three Gorges Reservoir (TGR) and Dongting Lake in Class I also showed significant TSS declines. Analysis with meteorological data shows that the intra-annual variations appear to be significantly correlated with local precipitation, with a time lag of two months for TSS. The prominent TSS decreasing trend of the lakes in Class II was probably linked to the significant NDVI increase in the MLY basin, whereas the TSS decrease in the TGR and Dongting Lake is likely to be attributed to the impoundment of the Three Gorges Dam. The TSS environmental data record (EDR) of large inland waters presented in this study serves as an important reference for future water quality monitoring and evaluation in the MLY and in China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
王哲发布了新的文献求助10
1秒前
落后的静曼完成签到,获得积分10
2秒前
CodeCraft应助mfy采纳,获得10
2秒前
wyyj完成签到,获得积分20
2秒前
2秒前
危机的菠萝完成签到,获得积分10
2秒前
Terrya完成签到,获得积分10
3秒前
大只00完成签到,获得积分10
3秒前
4秒前
思源应助小姜向阳开采纳,获得10
4秒前
5秒前
Jasper应助wyyj采纳,获得20
5秒前
6秒前
傲娇长颈鹿完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
大只00发布了新的文献求助10
9秒前
慕青应助王哲采纳,获得10
9秒前
10秒前
10秒前
lonely发布了新的文献求助10
10秒前
科研通AI6应助聪明紫山采纳,获得10
11秒前
icanccwhite发布了新的文献求助10
11秒前
yangph完成签到,获得积分10
11秒前
在水一方应助114555采纳,获得10
15秒前
15秒前
15秒前
fzh完成签到,获得积分10
15秒前
soiiixi发布了新的文献求助10
16秒前
应绝施发布了新的文献求助10
16秒前
16秒前
17秒前
icanccwhite完成签到,获得积分10
17秒前
shanshan发布了新的文献求助10
19秒前
qibo完成签到,获得积分10
19秒前
lily发布了新的文献求助10
20秒前
21秒前
脑洞疼应助无语的绿真采纳,获得10
21秒前
张建凯发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596