热电性
摩擦电效应
材料科学
压电
偶极子
铁电聚合物
结晶度
能量收集
电压
光电子学
铁电性
复合材料
功率(物理)
电介质
电气工程
有机化学
热力学
物理
化学
工程类
作者
Jihye Kim,Jeong Hwan Lee,Hanjun Ryu,Ju‐Hyuck Lee,Usman Khan,Han Kim,Sung Soo Kwak,Sang‐Woo Kim
标识
DOI:10.1002/adfm.201700702
摘要
Poly(vinylidenefluoride‐ co ‐trifluoroethylene) (P(VDF‐TrFE)), as a ferroelectric polymer, offers great promise for energy harvesting for flexible and wearable applications. Here, this paper shows that the choice of solvent used to dissolve the polymer significantly influences its properties in terms of energy harvesting. Indeed, the P(VDF‐TrFE) prepared using a high dipole moment solvent has higher piezoelectric and pyroelectric coefficients and triboelectric property. Such improvements are the result of higher crystallinity and better dipole alignment of the polymer prepared using a higher dipole moment solvent. Finite element method simulations confirm that the higher dipole moment results in higher piezoelectric, pyroelectric, and triboelectric potential distributions. Furthermore, P(VDF‐TrFE)‐based piezoelectric, pyroelectric, and triboelectric nanogenerators (NGs) experimentally validate that the higher dipole moment solvent significantly enhances the power output performance of the NGs; the improvement is about 24% and 82% in output voltage and current, respectively, for piezoelectric NG; about 40% and 35% in output voltage and current, respectively, for pyroelectric NG; and about 65% and 75% in output voltage and current for triboelectric NG. In brief, the approach of using a high dipole moment solvent is very promising for high output P(VDF‐TrFE)‐based wearable NGs.
科研通智能强力驱动
Strongly Powered by AbleSci AI