Convolutional neural networks for vibrational spectroscopic data analysis

预处理器 可解释性 卷积神经网络 模式识别(心理学) 人工智能 数据预处理 计算机科学 化学计量学 数据挖掘 化学 机器学习
作者
Jacopo Acquarelli,Twan van Laarhoven,Jan Gerretzen,Thanh N. Tran,L.M.C. Buydens,Elena Marchiori
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:954: 22-31 被引量:355
标识
DOI:10.1016/j.aca.2016.12.010
摘要

In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
3秒前
等待冰之完成签到 ,获得积分10
3秒前
3秒前
liuhhhh完成签到 ,获得积分10
3秒前
4秒前
王贺完成签到,获得积分10
7秒前
8秒前
科研通AI6应助五六七采纳,获得10
9秒前
9秒前
11完成签到,获得积分10
11秒前
8R60d8应助呆萌沛蓝采纳,获得10
11秒前
13秒前
14秒前
李健应助quant采纳,获得10
15秒前
mojibunny完成签到,获得积分10
16秒前
利好完成签到 ,获得积分10
17秒前
浮游应助lejunia采纳,获得10
17秒前
乔乔完成签到,获得积分10
17秒前
科研通AI6应助lejunia采纳,获得20
17秒前
meimei完成签到 ,获得积分10
18秒前
领导范儿应助my采纳,获得10
18秒前
科研小白发布了新的文献求助50
19秒前
19秒前
SciGPT应助my采纳,获得10
21秒前
风清扬发布了新的文献求助50
21秒前
勤奋惜寒完成签到,获得积分10
21秒前
小白完成签到 ,获得积分10
22秒前
danporzhu完成签到,获得积分10
23秒前
可爱的函函应助Pises采纳,获得10
23秒前
chen发布了新的文献求助10
23秒前
林曦窈关注了科研通微信公众号
25秒前
微笑的语芙完成签到,获得积分10
26秒前
乔乔发布了新的文献求助10
28秒前
香蕉觅云应助奋斗的珍采纳,获得10
29秒前
CipherSage应助风清扬采纳,获得10
29秒前
31秒前
31秒前
Orange应助热心梦山采纳,获得30
32秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310039
求助须知:如何正确求助?哪些是违规求助? 4454427
关于积分的说明 13860100
捐赠科研通 4342468
什么是DOI,文献DOI怎么找? 2384539
邀请新用户注册赠送积分活动 1379021
关于科研通互助平台的介绍 1347297