Convolutional neural networks for vibrational spectroscopic data analysis

预处理器 可解释性 卷积神经网络 模式识别(心理学) 人工智能 数据预处理 计算机科学 化学计量学 数据挖掘 化学 机器学习
作者
Jacopo Acquarelli,Twan van Laarhoven,Jan Gerretzen,Thanh N. Tran,L.M.C. Buydens,Elena Marchiori
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:954: 22-31 被引量:355
标识
DOI:10.1016/j.aca.2016.12.010
摘要

In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
生动觅柔完成签到,获得积分10
5秒前
Lucas应助lulu采纳,获得10
6秒前
科研通AI6应助sssshhh采纳,获得10
9秒前
妞妞完成签到,获得积分10
14秒前
16秒前
游侠EX发布了新的文献求助10
16秒前
大个应助拼搏问薇采纳,获得10
17秒前
17秒前
17秒前
zxhhm完成签到,获得积分10
19秒前
受伤破茧发布了新的文献求助10
20秒前
ding应助carl采纳,获得10
21秒前
栀蓝完成签到 ,获得积分10
21秒前
23秒前
Zjn-发布了新的文献求助10
24秒前
白白发布了新的文献求助10
28秒前
28秒前
酷炫的幻丝完成签到 ,获得积分10
29秒前
刘英丽发布了新的文献求助50
29秒前
科目三应助科研通管家采纳,获得10
29秒前
蓝天应助科研通管家采纳,获得10
29秒前
大个应助科研通管家采纳,获得10
29秒前
Verity应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
蓝天应助科研通管家采纳,获得10
29秒前
29秒前
拼搏应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
在水一方应助科研通管家采纳,获得10
30秒前
Hello应助科研通管家采纳,获得10
30秒前
Orange应助科研通管家采纳,获得30
30秒前
无极微光应助科研通管家采纳,获得40
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
orixero应助科研通管家采纳,获得10
30秒前
蓝天应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
Tamarin应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614