亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities

自噬 神经退行性变 生物 细胞生物学 神经科学 下调和上调 溶酶体 机制(生物学) 疾病 医学 遗传学 基因 生物化学 细胞凋亡 病理 哲学 认识论
作者
Fiona M. Menzies,Angeleen Fleming,Andrea Caricasole,Carla F. Bento,Stephen P. Andrews,Avraham Ashkenazi,Jens Füllgrabe,Anne Jackson,María Jiménez-Sánchez,Cansu Karabiyik,Floriana Licitra,Ana López,Mariana Pavel,Claudia Puri,Maurizio Renna,Thomas C. Ricketts,Lars Schlotawa,Mariella Vicinanza,Hyeran Won,Ye Zhu,John Skidmore,David C. Rubinsztein
出处
期刊:Neuron [Elsevier]
卷期号:93 (5): 1015-1034 被引量:949
标识
DOI:10.1016/j.neuron.2017.01.022
摘要

Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective. Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective. Macroautophagy (henceforth called autophagy) is a major intracytoplasmic protein degradation pathway whereby cytoplasmic contents are delivered, by double-membraned vesicles called autophagosomes, to the lysosome for degradation. It should be differentiated from other pathways that will not be considered in this review, like chaperone-mediated autophagy and microautophagy, where substrates are directly translocated into the lysosome without vesicular transport. The first morphologically characteristic structure in autophagy is the double-membraned, cup-shaped autophagosome precursor, called the phagophore, that engulfs substrates as its edges extend. After the phagophore edges close to form a vesicle, the completed autophagosomes traffic along microtubules to enable autophagosome-lysosome fusion, which leads to the degradation of the autophagic contents (Figure 1). Autophagy is regulated by a series of proteins defined as autophagy-related (ATG) proteins. Autophagy was initially characterized as a bulk and non-selective degradation pathway induced by nutrient deprivation. However, more recent studies made clear that autophagy also contributes to intracellular homeostasis in non-starved cells by degrading cargo material such as aggregate-prone proteins, including those causing many neurodegenerative conditions (aggrephagy), damaged mitochondria (mitophagy), excess peroxisomes (pexophagy), and invading pathogens (xenophagy) (Stolz et al., 2014Stolz A. Ernst A. Dikic I. Cargo recognition and trafficking in selective autophagy.Nat. Cell Biol. 2014; 16: 495-501Crossref PubMed Scopus (226) Google Scholar). In the classic example, aggregates of aberrantly folded proteins are tagged with ubiquitin chains that are recognized by ubiquitin-binding domain-containing receptors such as Sequestosome 1 (SQSTM1)/p62 (Bjørkøy et al., 2005Bjørkøy G. Lamark T. Brech A. Outzen H. Perander M. Overvatn A. Stenmark H. Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.J. Cell Biol. 2005; 171: 603-614Crossref PubMed Scopus (1510) Google Scholar), neighbor of BRCA1 gene 1 (NBR1) (Kirkin et al., 2009Kirkin V. Lamark T. Sou Y.S. Bjørkøy G. Nunn J.L. Bruun J.A. Shvets E. McEwan D.G. Clausen T.H. Wild P. et al.A role for NBR1 in autophagosomal degradation of ubiquitinated substrates.Mol. Cell. 2009; 33: 505-516Abstract Full Text Full Text PDF PubMed Scopus (509) Google Scholar), optineurin (OPTN) (Wild et al., 2011Wild P. Farhan H. McEwan D.G. Wagner S. Rogov V.V. Brady N.R. Richter B. Korac J. Waidmann O. Choudhary C. et al.Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth.Science. 2011; 333: 228-233Crossref PubMed Scopus (486) Google Scholar), Tax1 binding protein 1 (TAX1BP1), nuclear dot protein 52 (NDP52)/CALCOCO2 ((Newman et al., 2012Newman A.C. Scholefield C.L. Kemp A.J. Newman M. McIver E.G. Kamal A. Wilkinson S. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling.PLoS ONE. 2012; 7: e50672Crossref PubMed Scopus (48) Google Scholar), TOLL-interacting protein (TOLLIP) (Lu et al., 2014Lu K. Psakhye I. Jentsch S. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family.Cell. 2014; 158: 549-563Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar), and 26S proteasome regulatory subunit (RPN10) (Marshall et al., 2015Marshall R.S. Li F. Gemperline D.C. Book A.J. Vierstra R.D. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis.Mol. Cell. 2015; 58: 1053-1066Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar, Khaminets et al., 2016Khaminets A. Behl C. Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy.Trends Cell Biol. 2016; 26: 6-16Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, Stolz et al., 2014Stolz A. Ernst A. Dikic I. Cargo recognition and trafficking in selective autophagy.Nat. Cell Biol. 2014; 16: 495-501Crossref PubMed Scopus (226) Google Scholar). These receptors also contain LC3-interacting region (LIR) motifs in their sequences that can recognize the key autophagosome-associated protein microtubule-associated protein 1 light chain 3 (LC3). Thus, these receptors serve as a bridge between ubiquitinated cargo and autophagosomes and enhance the incorporation of cargo into autophagosomes for subsequent lysosomal degradation (Bjørkøy et al., 2005Bjørkøy G. Lamark T. Brech A. Outzen H. Perander M. Overvatn A. Stenmark H. Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.J. Cell Biol. 2005; 171: 603-614Crossref PubMed Scopus (1510) Google Scholar, Pankiv et al., 2007Pankiv S. Clausen T.H. Lamark T. Brech A. Bruun J.A. Outzen H. Øvervatn A. Bjørkøy G. Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.J. Biol. Chem. 2007; 282: 24131-24145Crossref PubMed Scopus (1825) Google Scholar). This concept of selective autophagy has now been extended with the description of precision autophagy. This is defined by the involvement of receptors with the ability to recognize LC3 family member proteins, their specific substrates, and also, importantly, the capacity to act as platforms for the assembly of other core ATG factors (Kimura et al., 2015Kimura T. Jain A. Choi S.W. Mandell M.A. Schroder K. Johansen T. Deretic V. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity.J. Cell Biol. 2015; 210: 973-989Crossref PubMed Scopus (38) Google Scholar). To date, receptors identified in this class come from the tripartite motif-containing (TRIM) family, a diverse group of proteins associated with the degradation of targets such as innate immunity signaling molecules (reviewed by Kimura et al., 2016Kimura T. Mandell M. Deretic V. Precision autophagy directed by receptor regulators - emerging examples within the TRIM family.J. Cell Sci. 2016; 129: 881-891Crossref PubMed Google Scholar). It seems likely that there are many other molecules that play such roles in autophagy, and identifying them will be key for our understanding of autophagy in non-starved cells. Autophagy activation in response to the primordial stimuli of nutrient deprivation and/or low cellular energy levels is mediated by signaling pathways that converge on ULK1/2 (mammalian homologs of the C. elegans uncoordinated-51 kinase) (Figure 2). ULK1/2 forms a complex with ATG13, ATG101, and focal adhesion kinase family-interacting protein of 200 kDa (FIP200). Nutrients and growth factor availability and levels of AMP/ATP (which reflect the energetic status of the cell) are sensed by mammalian target of rapamycin complex 1 (mTORC1) and AMP-dependent protein kinase (AMPK), respectively, which, in turn, oppositely regulate the ULK1/2 complex through a series of phosphorylation events. For instance, activation of AMPK by allosteric binding of AMP and phosphorylation of Thr172 promotes autophagy by directly activating ULK1 through phosphorylation of Ser317 and Ser77 under glucose deprivation (Kim et al., 2011Kim J. Kundu M. Viollet B. Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.Nat. Cell Biol. 2011; 13: 132-141Crossref PubMed Scopus (1619) Google Scholar) or Ser555 under amino acid starvation and mitophagy (Egan et al., 2011Egan D. Kim J. Shaw R.J. Guan K.L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR.Autophagy. 2011; 7: 643-644Crossref PubMed Scopus (7) Google Scholar). On the other hand, in medium replete with amino acids (sensed by the Rag-Ragulator complex) and growth factors (that signal by receptor tyrosine kinases and the phosphatidylinositol 3-kinase (PI3K)/AKT pathway), mTORC1 is activated and inhibits autophagy by binding to the ULK1 complex (via Raptor-ULK1 interaction) and by phosphorylating both ATG13 and ULK1 (at Ser 757), thereby suppressing ULK1 kinase activity and preventing the interaction between ULK1 and AMPK (Ganley et al., 2009Ganley I.G. Lam H. Wang J. Ding X. Chen S. Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy.J. Biol. Chem. 2009; 284: 12297-12305Crossref PubMed Scopus (565) Google Scholar, Hosokawa et al., 2009Hosokawa N. Hara T. Kaizuka T. Kishi C. Takamura A. Miura Y. Iemura S. Natsume T. Takehana K. Yamada N. et al.Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy.Mol. Biol. Cell. 2009; 20: 1981-1991Crossref PubMed Scopus (776) Google Scholar, Jung et al., 2009Jung C.H. Jun C.B. Ro S.H. Kim Y.M. Otto N.M. Cao J. Kundu M. Kim D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery.Mol. Biol. Cell. 2009; 20: 1992-2003Crossref PubMed Scopus (840) Google Scholar, Kim et al., 2011Kim J. Kundu M. Viollet B. Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.Nat. Cell Biol. 2011; 13: 132-141Crossref PubMed Scopus (1619) Google Scholar, Laplante and Sabatini, 2012Laplante M. Sabatini D.M. mTOR signaling in growth control and disease.Cell. 2012; 149: 274-293Abstract Full Text Full Text PDF PubMed Scopus (2911) Google Scholar). Activation of the ULK complex is required for the recruitment of the class III PI3K VPS34 to the phagophore initiation sites where VPS34 generates phosphatidylinositol 3-phosphate (PI3P) while in a complex with VPS15, ATG14, and Beclin 1. The exact functions of PI3P in autophagy are still unclear. However, it appears to aid the recruitment of tryptophan-aspartic acid (WD) repeat domain phosphoinositide-interacting (WIPI) proteins to the phagophore membrane, which, in turn, controls the recruitment of crucial downstream autophagic proteins (e.g., ATG16L1 by WIPI2) that dictate where the phagophores form (Dooley et al., 2014Dooley H.C. Razi M. Polson H.E. Girardin S.E. Wilson M.I. Tooze S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1.Mol. Cell. 2014; 55: 238-252Abstract Full Text Full Text PDF PubMed Scopus (105) Google Scholar). The ATG12 and ATG8/LC3 ubiquitin-like conjugation systems are then required for sustaining the expansion of the phagophore. In the first system, ATG12 is conjugated to ATG5 in a reaction that involves ATG7 and ATG10 (E1-like and E2-like enzymes, respectively), and the resulting complex binds non-covalently to ATG16L1. ATG12-ATG5-ATG16L1 associates with pre-autophagosomal membranes, enabling their elongation by assisting in the recruitment of LC3. However, before this can happen, LC3 has to be processed by the cysteine protease ATG4, which cleaves the C terminus of LC3, exposing a glycine residue (LC3-I form). This cleavage is crucial for LC3-I conjugation to phosphatidylethanolamine (PE) by a mechanism dependent on ATG7, ATG3, and ATG12-ATG5-ATG16L1 (E1-like, E2-like, and E3-like enzymes, respectively), leading to the formation of LC3-II, which is tightly associated with autophagosomal membranes. This cascade of reactions then sustains extension of the phagophore edges and its closure to form mature autophagosomes (Bento et al., 2016bBento C.F. Renna M. Ghislat G. Puri C. Ashkenazi A. Vicinanza M. Menzies F.M. Rubinsztein D.C. Mammalian Autophagy: How Does It Work?.Annu. Rev. Biochem. 2016; 85: 685-713Crossref PubMed Scopus (32) Google Scholar). Extension of the phagophore is also assisted by mATG9, the only identified multi-pass transmembrane protein among the core ATG proteins. This protein appears to localize to the trans-Golgi network and the endocytic compartment, including early endosomes, late endosomes, and recycling endosomes, and is postulated to aid in the supply of lipid bilayers to the nascent phagophore, enabling its further elongation prior to closure of the fully formed autophagosome (Bento et al., 2016bBento C.F. Renna M. Ghislat G. Puri C. Ashkenazi A. Vicinanza M. Menzies F.M. Rubinsztein D.C. Mammalian Autophagy: How Does It Work?.Annu. Rev. Biochem. 2016; 85: 685-713Crossref PubMed Scopus (32) Google Scholar). This late stage, where the outer and the inner membranes of the pre-autophagosomal structure become separate entities, is poorly understood, but ATG2, in combination with WIPI1, appears to regulate autophagosome closure (Velikkakath et al., 2012Velikkakath A.K. Nishimura T. Oita E. Ishihara N. Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets.Mol. Biol. Cell. 2012; 23: 896-909Crossref PubMed Scopus (104) Google Scholar), a process likely involving membrane fission/scission-type events akin to the genesis of multi-vesicular bodies by endosomal sorting complexes required for transport (ESCRT)-mediated membrane budding (Knorr et al., 2015Knorr R.L. Lipowsky R. Dimova R. Autophagosome closure requires membrane scission.Autophagy. 2015; 11: 2134-2137Crossref PubMed Scopus (6) Google Scholar). The source of autophagosome membranes is an area of active investigation. The endoplasmic reticulum (ER), Golgi and trans-Golgi network, mitochondria, plasma membrane, and endosomal compartments have all been suggested as possible sources of phagophore membranes (Bento et al., 2016bBento C.F. Renna M. Ghislat G. Puri C. Ashkenazi A. Vicinanza M. Menzies F.M. Rubinsztein D.C. Mammalian Autophagy: How Does It Work?.Annu. Rev. Biochem. 2016; 85: 685-713Crossref PubMed Scopus (32) Google Scholar). The ER emerged as one of the possible sources of membranes for pre-autophagosomes, not only because isolation membranes were observed cradled within a subdomain of the ER and interconnected with it (Axe et al., 2008Axe E.L. Walker S.A. Manifava M. Chandra P. Roderick H.L. Habermann A. Griffiths G. Ktistakis N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum.J. Cell Biol. 2008; 182: 685-701Crossref PubMed Scopus (755) Google Scholar, Hayashi-Nishino et al., 2009Hayashi-Nishino M. Fujita N. Noda T. Yamaguchi A. Yoshimori T. Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation.Nat. Cell Biol. 2009; 11: 1433-1437Crossref PubMed Scopus (518) Google Scholar) but also because ATG14- and ATG5-positive isolation membranes were found in close proximity to a subdomain of the ER in contact with mitochondria during starvation (Hamasaki et al., 2013Hamasaki M. Furuta N. Matsuda A. Nezu A. Yamamoto A. Fujita N. Oomori H. Noda T. Haraguchi T. Hiraoka Y. et al.Autophagosomes form at ER-mitochondria contact sites.Nature. 2013; 495: 389-393Crossref PubMed Scopus (463) Google Scholar). Post-Golgi tubulo-vesicular compartments undergoing remodelling and homotypic fusion (Guo et al., 2012Guo Y. Chang C. Huang R. Liu B. Bao L. Liu W. AP1 is essential for generation of autophagosomes from the trans-Golgi network.J. Cell Sci. 2012; 125: 1706-1715Crossref PubMed Scopus (41) Google Scholar, Orsi et al., 2012Orsi A. Razi M. Dooley H.C. Robinson D. Weston A.E. Collinson L.M. Tooze S.A. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy.Mol. Biol. Cell. 2012; 23: 1860-1873Crossref PubMed Scopus (162) Google Scholar, Young et al., 2006Young A.R. Chan E.Y. Hu X.W. Köchl R. Crawshaw S.G. High S. Hailey D.W. Lippincott-Schwartz J. Tooze S.A. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes.J. Cell Sci. 2006; 119: 3888-3900Crossref PubMed Scopus (390) Google Scholar) and the ER-Golgi intermediate compartment (ERGIC) have also been considered as pre-autophagosomal membrane sources (Ge et al., 2013Ge L. Melville D. Zhang M. Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis.eLife. 2013; 2: e00947Crossref Google Scholar, Ge et al., 2014Ge L. Zhang M. Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment.eLife. 2014; 3: e04135Crossref Scopus (21) Google Scholar). The ERGIC was specifically observed to bud LC3 lipidation-active vesicles that may enable autophagosome biogenesis and expansion (Ge et al., 2013Ge L. Melville D. Zhang M. Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis.eLife. 2013; 2: e00947Crossref Google Scholar, Ge et al., 2014Ge L. Zhang M. Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment.eLife. 2014; 3: e04135Crossref Scopus (21) Google Scholar). The plasma membrane and the endocytic compartments are also suggested as membrane sources for early autophagosomal precursor structures. Clathrin-dependent endocytosis has been implicated in this process by delivering ATG16L1 and mATG9 to recycling endosomes (via different routes and involving VAMP3-dependent membrane fusion events), which leads to the formation of early autophagosomal structures and mature autophagosomes (Moreau et al., 2011Moreau K. Ravikumar B. Renna M. Puri C. Rubinsztein D.C. Autophagosome precursor maturation requires homotypic fusion.Cell. 2011; 146: 303-317Abstract Full Text Full Text PDF PubMed Scopus (189) Google Scholar, Puri et al., 2013Puri C. Renna M. Bento C.F. Moreau K. Rubinsztein D.C. Diverse autophagosome membrane sources coalesce in recycling endosomes.Cell. 2013; 154: 1285-1299Abstract Full Text Full Text PDF PubMed Scopus (145) Google Scholar, Ravikumar et al., 2010Ravikumar B. Moreau K. Jahreiss L. Puri C. Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures.Nat. Cell Biol. 2010; 12: 747-757Crossref PubMed Scopus (418) Google Scholar). Overexpression of the recycling endosome proteins TBC1D14 (a Rab11 effector) or PX-containing SNX18 were shown to induce accumulation of mATG9 and ATG16L1, respectively, along with other autophagic proteins (e.g., ULK1 and LC3) in this compartment (Knævelsrud et al., 2013Knævelsrud H. Søreng K. Raiborg C. Håberg K. Rasmuson F. Brech A. Liestøl K. Rusten T.E. Stenmark H. Neufeld T.P. et al.Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation.J. Cell Biol. 2013; 202: 331-349Crossref PubMed Scopus (59) Google Scholar, Lamb et al., 2016Lamb C.A. Nühlen S. Judith D. Frith D. Snijders A.P. Behrends C. Tooze S.A. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic.EMBO J. 2016; 35: 281-301Crossref PubMed Google Scholar, Longatti et al., 2012Longatti A. Lamb C.A. Razi M. Yoshimura S. Barr F.A. Tooze S.A. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes.J. Cell Biol. 2012; 197: 659-675Crossref PubMed Scopus (132) Google Scholar), reinforcing the possible role of the recycling endosome as an important phagophore membrane source. In addition to phosphorylation, discussed above, autophagy is also regulated at the transcriptional level. mTORC1, apart from regulating the ULK1/2 complex, also connects the lysosome nutrient-sensing (LYNUS) machinery to the transcriptional regulation of autophagy genes via transcription factor EB (TFEB) (Settembre et al., 2012Settembre C. Zoncu R. Medina D.L. Vetrini F. Erdin S. Erdin S. Huynh T. Ferron M. Karsenty G. Vellard M.C. et al.A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB.EMBO J. 2012; 31: 1095-1108Crossref PubMed Scopus (415) Google Scholar). In resting cells, phosphorylation of TFEB by active mTORC1 induces TFEB binding to 14-3-3 proteins and, therefore, TFEB retention in the cytosol (Roczniak-Ferguson et al., 2012Roczniak-Ferguson A. Petit C.S. Froehlich F. Qian S. Ky J. Angarola B. Walther T.C. Ferguson S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.Sci. Signal. 2012; 5: ra42Crossref PubMed Scopus (258) Google Scholar, Settembre et al., 2011Settembre C. Di Malta C. Polito V.A. Garcia Arencibia M. Vetrini F. Erdin S. Erdin S.U. Huynh T. Medina D. Colella P. et al.TFEB links autophagy to lysosomal biogenesis.Science. 2011; 332: 1429-1433Crossref PubMed Scopus (663) Google Scholar). However, under starvation and consequent mTORC1 inactivation, TFEB is no longer phosphorylated and translocates to the nucleus, where it binds to coordinated lysosomal expression and regulation (CLEAR) consensus sequences in promoters of target genes and induces their transcription. Among these genes, many are directly related to the lysosome and autophagy (e.g., lysosomal hydrolases, vacuolar-type H+-ATPase (v-ATPase) subunits, and ATG proteins), and, thus, TFEB appears to co-ordinately regulate the expression of many of the key genes required for autophagy/lysosome function (Sardiello et al., 2009Sardiello M. Palmieri M. di Ronza A. Medina D.L. Valenza M. Gennarino V.A. Di Malta C. Donaudy F. Embrione V. Polishchuk R.S. et al.A gene network regulating lysosomal biogenesis and function.Science. 2009; 325: 473-477Crossref PubMed Scopus (579) Google Scholar, Settembre et al., 2011Settembre C. Di Malta C. Polito V.A. Garcia Arencibia M. Vetrini F. Erdin S. Erdin S.U. Huynh T. Medina D. Colella P. et al.TFEB links autophagy to lysosomal biogenesis.Science. 2011; 332: 1429-1433Crossref PubMed Scopus (663) Google Scholar). Zinc-finger protein with KRAB and SCAN domains 3 (ZKSCAN3) is a transcriptional repressor of autophagy that appears to oppose TFEB. ZKSCAN3 silencing enhances autophagosome and lysosomal biogenesis, and mTORC1 inhibition induces its accumulation in the cytosol (Chauhan et al., 2013Chauhan S. Goodwin J.G. Chauhan S. Manyam G. Wang J. Kamat A.M. Boyd D.D. ZKSCAN3 is a master transcriptional repressor of autophagy.Mol. Cell. 2013; 50: 16-28Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar). More than 20 other transcription factors have now been linked to transcriptional regulation of autophagy following a wide range of stimuli (Füllgrabe et al., 2014Füllgrabe J. Klionsky D.J. Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy.Nat. Rev. Mol. Cell Biol. 2014; 15: 65-74Crossref PubMed Scopus (136) Google Scholar). For instance, microphthalmia-associated transcription factor (MITF) (which belongs to the same family of proteins as TFEB) (Martina et al., 2014Martina J.A. Diab H.I. Li H. Puertollano R. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis.Cell. Mol. Life Sci. 2014; 71: 2483-2497Crossref PubMed Scopus (0) Google Scholar), p53 (Kenzelmann Broz and Attardi, 2013Kenzelmann Broz D. Attardi L.D. TRP53 activates a global autophagy program to promote tumor suppression.Autophagy. 2013; 9: 1440-1442Crossref PubMed Scopus (10) Google Scholar) and forkhead box O3 (FOXO3) (Mammucari et al., 2007Mammucari C. Milan G. Romanello V. Masiero E. Rudolf R. Del Piccolo P. Burden S.J. Di Lisi R. Sandri C. Zhao J. et al.FoxO3 controls autophagy in skeletal muscle in vivo.Cell Metab. 2007; 6: 458-471Abstract Full Text Full Text PDF PubMed Scopus (882) Google Scholar) have all been shown to trans-activate ATG genes. The mammalian nervous system requires autophagy to maintain its normal functions and homeostasis. Because ubiquitous deletion of core autophagy genes results in neonatal and embryonic lethality, multiple nervous system-specific knockout mouse models have been generated to allow analyses of the roles of autophagy in neuronal function. A Nestin-Cre promoter that switches on embryonically in neuronal precursor cells has been used to excise floxed alleles of Atg5 and Atg7. This results in autophagy deficiency in neuronal cells and glia, accompanied by the accumulation of intra-neuronal aggregates (Hara et al., 2006Hara T. Nakamura K. Matsui M. Yamamoto A. Nakahara Y. Suzuki-Migishima R. Yokoyama M. Mishima K. Saito I. Okano H. Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.Nature. 2006; 441: 885-889Crossref PubMed Scopus (1995) Google Scholar, Komatsu et al., 2006Komatsu M. Waguri S. Chiba T. Murata S. Iwata J. Tanida I. Ueno T. Koike M. Uchiyama Y. Kominami E. Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice.Nature. 2006; 441: 880-884Crossref PubMed Scopus (1863) Google Scholar, Komatsu et al., 2007aKomatsu M. Waguri S. Koike M. Sou Y.S. Ueno T. Hara T. Mizushima N. Iwata J. Ezaki J. Murata S. et al.Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice.Cell. 2007; 131: 1149-1163Abstract Full Text Full Text PDF PubMed Scopus (1058) Google Scholar). The accumulation of these aggregates in otherwise normal mice suggests that autophagy plays a key role in removing aggregate-prone proteins, supporting earlier studies in cell culture models of Huntington’s disease (Ravikumar et al., 2002Ravikumar B. Duden R. Rubinsztein D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy.Hum. Mol. Genet. 2002; 11: 1107-1117Crossref PubMed Google Scholar). Subsequent Nestin-Cre models have been generated targeting FIP200 and Wipi4 as well as a double knockout for Ulk1/2 (Joo et al., 2016Joo J.H. Wang B. Frankel E. Ge L. Xu L. Iyengar R. Li-Harms X. Wright C. Shaw T.I. Lindsten T. et al.The Noncanonical Role of ULK/ATG1 in ER-to-Golgi Trafficking Is Essential for Cellular Homeostasis.Mol. Cell. 2016; 62: 491-506Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar, Liang et al., 2010Liang C.C. Wang C. Peng X. Gan B. Guan J.L. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration.J. Biol. Chem. 2010; 285: 3499-3509Crossref PubMed Scopus (76) Google Scholar, Orosco et al., 2014Orosco L.A. Ross A.P. Cates S.L. Scott S.E. Wu D. Sohn J. Pleasure D. Pleasure S.J. Adamopoulos I.E. Zarbalis K.S. Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology.Nat. Commun. 2014; 5: 4692Crossref PubMed Google Scholar). The result in all models is reduced survival and early-onset, progressive neurodegeneration across broad areas of the brain. However, the nature of pathology varies according to the gene targeted; e.g., progressive spongiosis is seen in FIP200 Nestin-Cre mice but not the Atg5 and Atg7 Nestin-Cre models. The variability observed between models will likely be accounted for by the stages at which autophagy is disrupted as well as non-autophagy functions for each target. To further delineate the function of autophagy in different neuronal types, targeted knockouts of Atg5 and Atg7 in Purkinje neurons of the cerebellum (Komatsu et al., 2006Komatsu M. Waguri S. Chiba T. Murata S. Iwata J. Tanida I. Ueno T. Koike M. Uchiyama Y. Kominami E. Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice.Nature. 2006; 441: 880-884Crossref PubMed Scopus (1863) Google Scholar, Nishiyama et al., 2007Nishiyama J. Miura E. Mizushima N. Watanabe M. Yuzaki M. Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death.Autophagy. 2007; 3: 591-596Crossref PubMed Scopus (109) Google Scholar), Atg7 in agouti-related peptide (AgRP) neurons of the hypothalamus (Kaushik et al., 2011Kaushik S. Rodriguez-Navarro J.A. Arias E. Kiffin R. Sahu S. Schwartz G.J. Cuervo A.M. Singh R. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance.Cell Metab. 2011; 14: 173-183Abstract Full Text Full Text PDF PubMed Scopus (143) Google Scholar), as well as Atg5 and Atg7 in rhodopsin neurons of the retina (Chen et al., 2013Chen Y. Sawada O. Kohno H. Le Y.Z. Subauste C. Maeda T. Maeda A. Autophagy protects the retina from light-induced degeneration.J. Biol. Chem. 2013; 288: 7506-7518Crossref PubMed Scopus (0) Google Scholar, Zhou et al., 2015Zhou Z. Doggett T.A. Sene A. Apte R.S. Ferguson T.A. Autophagy supports survival and phototransduction protein levels in rod photoreceptors.Cell Death Differ. 2015; 22: 488-498Crossref PubMed Scopus (1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏凛完成签到 ,获得积分10
3秒前
121314wld完成签到,获得积分10
3秒前
shanbaibai完成签到,获得积分10
4秒前
7秒前
121314wld发布了新的文献求助10
7秒前
狂野晓蕾发布了新的文献求助10
10秒前
狂野晓蕾完成签到,获得积分10
24秒前
30秒前
邓佳鑫Alan应助barretace采纳,获得10
35秒前
啊大大完成签到,获得积分10
42秒前
45秒前
45秒前
胡萝卜完成签到 ,获得积分10
48秒前
食盐同学发布了新的文献求助10
49秒前
漠北发布了新的文献求助10
52秒前
科研通AI2S应助wszzb采纳,获得10
55秒前
Abdurrahman完成签到,获得积分10
1分钟前
Z小姐完成签到 ,获得积分10
1分钟前
1分钟前
研友_ZAVbe8完成签到,获得积分0
1分钟前
pinklay完成签到 ,获得积分10
1分钟前
科研通AI2S应助gougoudy采纳,获得10
1分钟前
豆包发布了新的文献求助10
1分钟前
1分钟前
wcj发布了新的文献求助10
2分钟前
Fzx2664242918发布了新的文献求助10
2分钟前
2分钟前
Fzx2664242918完成签到,获得积分10
2分钟前
碳烤小黑茶完成签到 ,获得积分10
2分钟前
light发布了新的文献求助10
2分钟前
2分钟前
活泼蛋挞发布了新的文献求助10
2分钟前
2分钟前
2分钟前
虚心的冥王星完成签到,获得积分10
2分钟前
李爱国应助虚心的冥王星采纳,获得10
2分钟前
Hayat应助科研通管家采纳,获得10
2分钟前
wszzb完成签到,获得积分10
3分钟前
谦让小咖啡完成签到 ,获得积分10
3分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130136
求助须知:如何正确求助?哪些是违规求助? 2780917
关于积分的说明 7750401
捐赠科研通 2436101
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623716
版权声明 600570