已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

(Keynote) FDSOI Past, Present and Future

绝缘体上的硅 晶体管 CMOS芯片 节点(物理) 电气工程 光电子学 蚀刻(微加工) 缩放比例 电子工程 反应离子刻蚀 纳米技术 过程(计算) 计算机科学 材料科学 工程物理 工程类 电压 结构工程 操作系统 数学 几何学 图层(电子)
作者
B. Doris
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (30): 1953-1953
标识
DOI:10.1149/ma2016-02/30/1953
摘要

FDSOI is quickly becoming a technology offering that can deliver next generation performance with superior low power operation at a significant cost advantage. Researchers have actively pursued alternatives to conventional bulk and PDSOI transistors for well over 10 years. However, there was not enough compelling need to change until conventional CMOS scaling dramatically slowed. Beyond the 28nm node new device architectures were needed to continue the scaling trend. FDSOI was always thought to be an attractive option since of all the alternative approaches it is the most similar to conventional bulk or PDSOI. This is mainly due to the fact that it is planar and thus much of the process and design methodology can be re used from previous nodes. On the other hand several key issues for FDSOI were known and thought to be fundamental challenges. Specifically silicon consumption, high external resistance and parasitic capacitance were identified as major hurdles. FDSOI relies upon the thin channel to control short channel effects. For example a channel thickness of approximately 6nm is required to maintain good electrostatics for a transistor with Lg=20nm. Maintaining thin silicon in the channel while still preserving silicon in the source-drain regions is a big process challenge. We have carefully optimized several key process steps including the spacer etch process to eliminate excessive silicon consumption. As shown in Fig. 1 the zero loss spacer process features a partial etch using reactive ion etching. In order to minimize silicon consumption, the spacer etch is terminated before the spacer material is completely removed from the horizontal surfaces and the dry etch cannot consume silicon. The residual spacer material is removed as part of the pre epi clean for raised source-drain. Since the wet etch for the pre-clean is highly selective to the silicon, there is no silicon consumption. High external resistance was thought to be a significant challenge for FDSOI mainly in part due to the silicon consumption from the spacer process but also from the junction formation process. Ion implantation is well known to cause damage in thin silicon even with high temperature activation anneal. The silicon damage caused by the ion implantation can also cause defective epitaxial growth during the raised source drain process. We have solved the challenge of junction formation for FDSOI by developing an implant last scheme. After the spacer module is completed the raised-source and drain is formed. Since the ion implant is done into the thick raised-source drain, the damage created is healed during the activation anneal. Parasitic capacitance is another known issue for devices with raised-source drain. We have developed a facetted epi process which eliminates a significant component of the additional parasitic capacitance caused by the raised-source drain (Fig. 2). 1 We have also developed several key elements that enable high performance FDSOI circuits. In-situ doped SiGeB for raised source-drain has been developed to reduce contact resistance and form abrupt junctions for pFETs. SiGe channel is another innovation we have developed to enable high performance by increasing hole mobility. Fig. 3 shows the benefit of the strained SiGe raised source-drain and the SiGe channel. 2 FDSOI is scalable and can be used for several technology nodes. Gate length scaling for FDSOI can be accomplished by thinning the silicon. Reverse back bias can also be used to improve short channel effects and enable scaling. Figure 4 shows the improvement in short channel control as the silicon is thinned down to 3.5nm Remarkably the external resistance of the devices is not compromised as evidenced by the Ion vs Ioff comparison to devices with 6nm channel thickness. The same figure also shows the improvement in electrostatic behavior with reverse back bias. 3 Additional improvements in FDSOI performance can be achieved by strained silicon on insulator technology. Figure 5 shows the benefit of the strained silicon channel for nFETs. 4 Table 1 shows a comparison of state of the art FDSOI research transistors to FinFETs. 5 It is interesting to note that the FDSOI devices can achieve competitive drive currents at dramatically shorter gate-lengths thereby improving circuit performance. It is also interesting to note the FinFETs are normalized to the footprint which is 30% greater than the effective channel width. References K. Cheng et. al. IEDM 2010. K. Cheng et. al. IEDM 2013. A. Khakifirooz et. al. EDL 2012. A. Khakifirooz et. al. VLSI 2012. Q. Liu et. al. IEDM 2014. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵啵啵小太阳完成签到,获得积分10
4秒前
FashionBoy应助freshfire采纳,获得10
5秒前
可达鸭完成签到 ,获得积分10
7秒前
聪明静柏完成签到 ,获得积分10
11秒前
Foxjker完成签到 ,获得积分10
12秒前
20秒前
SYLH应助ceeray23采纳,获得20
20秒前
饭ff发布了新的文献求助10
26秒前
28秒前
30秒前
31秒前
CNS发布了新的文献求助10
34秒前
freshfire发布了新的文献求助10
35秒前
遥知马完成签到,获得积分10
36秒前
饭ff完成签到,获得积分20
37秒前
一颗滚石完成签到,获得积分10
37秒前
YiXianCoA完成签到 ,获得积分10
42秒前
可爱的函函应助干净涵梅采纳,获得10
44秒前
科研通AI2S应助科研达人采纳,获得10
44秒前
CNS完成签到,获得积分10
46秒前
Angela完成签到,获得积分10
55秒前
betyby完成签到 ,获得积分10
55秒前
sudor123456完成签到,获得积分10
56秒前
隐形曼青应助饭ff采纳,获得10
56秒前
ddfighting完成签到,获得积分10
57秒前
迷人兰花完成签到,获得积分10
1分钟前
ab完成签到,获得积分10
1分钟前
瘦瘦乌龟完成签到 ,获得积分10
1分钟前
Worenxian完成签到 ,获得积分10
1分钟前
冰西瓜完成签到 ,获得积分0
1分钟前
SYLH应助ceeray23采纳,获得20
1分钟前
Owen应助科研达人采纳,获得10
1分钟前
杨程羽发布了新的文献求助10
1分钟前
孤标傲世完成签到 ,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
pp‘s完成签到 ,获得积分10
1分钟前
大学生完成签到 ,获得积分10
1分钟前
杨程羽完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
传奇3应助LMX采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532047
关于积分的说明 11256141
捐赠科研通 3270918
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216