亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Firm size and the predictive ability of quarterly earnings data

计量经济学 收益 自相关 自回归积分移动平均 经济 收益增长 自回归模型 差异(会计) 样品(材料) 多元统计 统计 时间序列 数学 会计 色谱法 化学
作者
Kenneth S. Lorek,Allen W. Bathke,G. Lee Willinger
出处
期刊:The Accounting Review [American Accounting Association]
卷期号:: 49-68 被引量:51
摘要

We present evidence on inter-firm differences in the predictive ability of quarterly earnings data for a sample of 109 New York Stock Exchange firms. The sample consisted of large, medium, and small firms after deletion of nonseasonal and volatile growth and inconsistent strata membership firms. Although the structure of the best fitting time-series models was constant across firm-size strata, we did find significant differences in the autoregressive parameters of the Foster and Brown and Rozeff ARIMA models across firm-size strata. One-step-ahead quarterly earnings forecasts were generated by a set of best fitting time-series models. A repeated measure multivariate analysis of variance design indicated that predictive ability differed on the basis of size at the .012 level. Tests also indicated that largeand medium-size firms generated one-step-ahead forecasts that were significantly more accurate than smaller firms at the .05 level. We obtained similar predictive findings on the significance of the size-effect in a supplementary analysis of the nonseasonal and volatile growth and inconsistent strata membership firms. T HE time-series properties and predictive ability of quarterly earnings data have long been topics of interest to financial accounting researchers. The focus of early work in time-series research was on the development of parsimonious models for quarterly earnings such as those popularized by Foster [1977], Griffin [1977], Watts [1975], and Brown and Rozeff [1979]. Motivation for such time-series work has been the notion that a general form seasonal model, identified from cross-sectionally derived average sample autocorrelation functions (SACFs), is sufficiently robust to represent the quarterly earnings data of firms without resorting to more complex, firm-specific alternatives. However, more recent work by Lorek and Bathke [1984] provides evidence that the quarterly earnings of certain firms behave in a nonseasonal manner systematically different from that suggested by the parsimonious models.1 This raises the issue of whether systematic differ' All three parsimonious models contain either seasonal differencing and/or seasonal moving average

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
9秒前
黑摄会阿Fay完成签到,获得积分10
20秒前
酒渡完成签到,获得积分10
29秒前
lsl完成签到 ,获得积分10
29秒前
henry完成签到,获得积分10
34秒前
38秒前
42秒前
42秒前
苦瓜大王完成签到 ,获得积分10
49秒前
文欣完成签到 ,获得积分0
56秒前
1分钟前
大胆面包完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
rubylalala发布了新的文献求助10
1分钟前
自由的无色完成签到 ,获得积分10
1分钟前
叙温雨发布了新的文献求助10
2分钟前
2分钟前
爆米花应助叙温雨采纳,获得10
2分钟前
rubylalala完成签到,获得积分10
2分钟前
2分钟前
叙温雨发布了新的文献求助10
3分钟前
Eileen完成签到 ,获得积分10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
3分钟前
呜呼发布了新的文献求助10
3分钟前
慕青应助2621184400采纳,获得30
3分钟前
呜呼完成签到,获得积分20
3分钟前
叙温雨发布了新的文献求助10
3分钟前
Anthonywll完成签到 ,获得积分10
4分钟前
4分钟前
芝士发布了新的文献求助10
4分钟前
是述不是沭完成签到,获得积分0
4分钟前
CATH完成签到 ,获得积分10
4分钟前
悲凉的忆南完成签到,获得积分10
4分钟前
Akim应助叙温雨采纳,获得10
4分钟前
yxl完成签到,获得积分10
4分钟前
钟哈哈完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291706
求助须知:如何正确求助?哪些是违规求助? 4442649
关于积分的说明 13830222
捐赠科研通 4325779
什么是DOI,文献DOI怎么找? 2374461
邀请新用户注册赠送积分活动 1369766
关于科研通互助平台的介绍 1334072