Firm size and the predictive ability of quarterly earnings data

计量经济学 收益 自相关 自回归积分移动平均 经济 收益增长 自回归模型 差异(会计) 样品(材料) 多元统计 统计 时间序列 数学 会计 色谱法 化学
作者
Kenneth S. Lorek,Allen W. Bathke,G. Lee Willinger
出处
期刊:The Accounting Review [American Accounting Association]
卷期号:: 49-68 被引量:51
摘要

We present evidence on inter-firm differences in the predictive ability of quarterly earnings data for a sample of 109 New York Stock Exchange firms. The sample consisted of large, medium, and small firms after deletion of nonseasonal and volatile growth and inconsistent strata membership firms. Although the structure of the best fitting time-series models was constant across firm-size strata, we did find significant differences in the autoregressive parameters of the Foster and Brown and Rozeff ARIMA models across firm-size strata. One-step-ahead quarterly earnings forecasts were generated by a set of best fitting time-series models. A repeated measure multivariate analysis of variance design indicated that predictive ability differed on the basis of size at the .012 level. Tests also indicated that largeand medium-size firms generated one-step-ahead forecasts that were significantly more accurate than smaller firms at the .05 level. We obtained similar predictive findings on the significance of the size-effect in a supplementary analysis of the nonseasonal and volatile growth and inconsistent strata membership firms. T HE time-series properties and predictive ability of quarterly earnings data have long been topics of interest to financial accounting researchers. The focus of early work in time-series research was on the development of parsimonious models for quarterly earnings such as those popularized by Foster [1977], Griffin [1977], Watts [1975], and Brown and Rozeff [1979]. Motivation for such time-series work has been the notion that a general form seasonal model, identified from cross-sectionally derived average sample autocorrelation functions (SACFs), is sufficiently robust to represent the quarterly earnings data of firms without resorting to more complex, firm-specific alternatives. However, more recent work by Lorek and Bathke [1984] provides evidence that the quarterly earnings of certain firms behave in a nonseasonal manner systematically different from that suggested by the parsimonious models.1 This raises the issue of whether systematic differ' All three parsimonious models contain either seasonal differencing and/or seasonal moving average

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
361发布了新的文献求助10
2秒前
周勇峰发布了新的文献求助10
2秒前
Mary关注了科研通微信公众号
2秒前
JAMA兜里揣发布了新的文献求助100
2秒前
Chelsea完成签到,获得积分10
3秒前
和花花完成签到,获得积分10
3秒前
effort完成签到,获得积分10
3秒前
那只幸运的小肥羊完成签到,获得积分10
4秒前
4秒前
5秒前
压力是多的完成签到,获得积分10
5秒前
6秒前
7秒前
安详巧凡关注了科研通微信公众号
7秒前
cy完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
跳跃鱼完成签到,获得积分10
10秒前
10秒前
不想看文献完成签到,获得积分10
11秒前
aq22完成签到 ,获得积分10
12秒前
秋沐完成签到,获得积分10
12秒前
12秒前
梦璃完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
情怀应助xueshu采纳,获得10
13秒前
冷静伟诚完成签到,获得积分10
13秒前
臭皮匠发布了新的文献求助10
14秒前
科研通AI6应助12采纳,获得10
14秒前
Zoey完成签到,获得积分10
14秒前
夏天发布了新的文献求助30
15秒前
zzuzll发布了新的文献求助10
15秒前
17秒前
爱听歌的睫毛膏完成签到 ,获得积分10
17秒前
英姑应助吃生肉的孙尚香采纳,获得10
18秒前
Owen应助李伟龙采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684019
求助须知:如何正确求助?哪些是违规求助? 5034811
关于积分的说明 15183309
捐赠科研通 4843392
什么是DOI,文献DOI怎么找? 2596672
邀请新用户注册赠送积分活动 1549384
关于科研通互助平台的介绍 1507854