已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Firm size and the predictive ability of quarterly earnings data

计量经济学 收益 自相关 自回归积分移动平均 经济 收益增长 自回归模型 差异(会计) 样品(材料) 多元统计 统计 时间序列 数学 会计 色谱法 化学
作者
Kenneth S. Lorek,Allen W. Bathke,G. Lee Willinger
出处
期刊:The Accounting Review [American Accounting Association]
卷期号:: 49-68 被引量:51
摘要

We present evidence on inter-firm differences in the predictive ability of quarterly earnings data for a sample of 109 New York Stock Exchange firms. The sample consisted of large, medium, and small firms after deletion of nonseasonal and volatile growth and inconsistent strata membership firms. Although the structure of the best fitting time-series models was constant across firm-size strata, we did find significant differences in the autoregressive parameters of the Foster and Brown and Rozeff ARIMA models across firm-size strata. One-step-ahead quarterly earnings forecasts were generated by a set of best fitting time-series models. A repeated measure multivariate analysis of variance design indicated that predictive ability differed on the basis of size at the .012 level. Tests also indicated that largeand medium-size firms generated one-step-ahead forecasts that were significantly more accurate than smaller firms at the .05 level. We obtained similar predictive findings on the significance of the size-effect in a supplementary analysis of the nonseasonal and volatile growth and inconsistent strata membership firms. T HE time-series properties and predictive ability of quarterly earnings data have long been topics of interest to financial accounting researchers. The focus of early work in time-series research was on the development of parsimonious models for quarterly earnings such as those popularized by Foster [1977], Griffin [1977], Watts [1975], and Brown and Rozeff [1979]. Motivation for such time-series work has been the notion that a general form seasonal model, identified from cross-sectionally derived average sample autocorrelation functions (SACFs), is sufficiently robust to represent the quarterly earnings data of firms without resorting to more complex, firm-specific alternatives. However, more recent work by Lorek and Bathke [1984] provides evidence that the quarterly earnings of certain firms behave in a nonseasonal manner systematically different from that suggested by the parsimonious models.1 This raises the issue of whether systematic differ' All three parsimonious models contain either seasonal differencing and/or seasonal moving average

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
1秒前
ChouChou发布了新的文献求助20
4秒前
6秒前
点击获取完成签到,获得积分10
7秒前
社牛小柯完成签到,获得积分10
7秒前
Ivan完成签到 ,获得积分10
10秒前
积极一德完成签到 ,获得积分10
11秒前
faquir发布了新的文献求助10
11秒前
16秒前
2000pluv完成签到 ,获得积分10
18秒前
Fran07发布了新的文献求助30
20秒前
leyellows完成签到 ,获得积分10
22秒前
24秒前
友好板栗完成签到,获得积分10
25秒前
小zz完成签到 ,获得积分10
33秒前
34秒前
36秒前
bkagyin应助朴素香萱采纳,获得10
37秒前
冷静初雪完成签到,获得积分10
38秒前
大模型应助简单山水采纳,获得10
40秒前
张逍遥发布了新的文献求助10
41秒前
浮浮世世发布了新的文献求助10
42秒前
dmq完成签到 ,获得积分10
45秒前
知性的夏之完成签到 ,获得积分10
46秒前
隐形曼青应助浮浮世世采纳,获得10
47秒前
48秒前
lars完成签到,获得积分10
51秒前
古渡应助张逍遥采纳,获得10
51秒前
cfffff发布了新的文献求助10
52秒前
57秒前
陨落星辰完成签到 ,获得积分10
1分钟前
科研小菜狗完成签到 ,获得积分10
1分钟前
accepted完成签到 ,获得积分10
1分钟前
自信书文完成签到 ,获得积分10
1分钟前
李爱国应助dst采纳,获得10
1分钟前
1分钟前
人美心善大野驴完成签到 ,获得积分10
1分钟前
zsj完成签到 ,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
faquir发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524