Firm size and the predictive ability of quarterly earnings data

计量经济学 收益 自相关 自回归积分移动平均 经济 收益增长 自回归模型 差异(会计) 样品(材料) 多元统计 统计 时间序列 数学 会计 色谱法 化学
作者
Kenneth S. Lorek,Allen W. Bathke,G. Lee Willinger
出处
期刊:The Accounting Review [American Accounting Association]
卷期号:: 49-68 被引量:51
摘要

We present evidence on inter-firm differences in the predictive ability of quarterly earnings data for a sample of 109 New York Stock Exchange firms. The sample consisted of large, medium, and small firms after deletion of nonseasonal and volatile growth and inconsistent strata membership firms. Although the structure of the best fitting time-series models was constant across firm-size strata, we did find significant differences in the autoregressive parameters of the Foster and Brown and Rozeff ARIMA models across firm-size strata. One-step-ahead quarterly earnings forecasts were generated by a set of best fitting time-series models. A repeated measure multivariate analysis of variance design indicated that predictive ability differed on the basis of size at the .012 level. Tests also indicated that largeand medium-size firms generated one-step-ahead forecasts that were significantly more accurate than smaller firms at the .05 level. We obtained similar predictive findings on the significance of the size-effect in a supplementary analysis of the nonseasonal and volatile growth and inconsistent strata membership firms. T HE time-series properties and predictive ability of quarterly earnings data have long been topics of interest to financial accounting researchers. The focus of early work in time-series research was on the development of parsimonious models for quarterly earnings such as those popularized by Foster [1977], Griffin [1977], Watts [1975], and Brown and Rozeff [1979]. Motivation for such time-series work has been the notion that a general form seasonal model, identified from cross-sectionally derived average sample autocorrelation functions (SACFs), is sufficiently robust to represent the quarterly earnings data of firms without resorting to more complex, firm-specific alternatives. However, more recent work by Lorek and Bathke [1984] provides evidence that the quarterly earnings of certain firms behave in a nonseasonal manner systematically different from that suggested by the parsimonious models.1 This raises the issue of whether systematic differ' All three parsimonious models contain either seasonal differencing and/or seasonal moving average

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净思远完成签到,获得积分10
1秒前
演化的蛙鱼完成签到,获得积分10
1秒前
duoduo完成签到 ,获得积分10
2秒前
李华完成签到 ,获得积分10
3秒前
hwl26完成签到,获得积分10
4秒前
bing完成签到,获得积分10
5秒前
凶狠的映易完成签到 ,获得积分10
5秒前
hzauhzau完成签到 ,获得积分10
6秒前
小杭76应助xh采纳,获得10
8秒前
Jerry完成签到,获得积分10
9秒前
sxun完成签到,获得积分20
9秒前
缓慢的甜瓜完成签到,获得积分10
12秒前
她的城完成签到,获得积分0
14秒前
云淡风清完成签到 ,获得积分10
14秒前
Jzhaoc580完成签到 ,获得积分10
15秒前
潜行者完成签到 ,获得积分10
16秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
Lotus完成签到,获得积分10
21秒前
Jimmy_King完成签到 ,获得积分10
21秒前
悦耳代双完成签到 ,获得积分10
21秒前
22秒前
开朗的溪灵完成签到,获得积分10
23秒前
夏天不回来完成签到,获得积分10
23秒前
TTYYI完成签到 ,获得积分10
24秒前
孙非完成签到,获得积分10
24秒前
26秒前
笑林完成签到 ,获得积分10
26秒前
科研通AI2S应助单薄冰兰采纳,获得10
28秒前
30秒前
咄咄完成签到 ,获得积分10
30秒前
whitepiece完成签到,获得积分10
31秒前
一颗煤炭完成签到 ,获得积分10
31秒前
yanxuhuan完成签到 ,获得积分10
36秒前
allrubbish完成签到,获得积分10
36秒前
李琼琼完成签到 ,获得积分10
38秒前
茄子鱼完成签到,获得积分10
39秒前
ZDM6094完成签到 ,获得积分10
41秒前
一件衣服完成签到 ,获得积分10
42秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325651
求助须知:如何正确求助?哪些是违规求助? 4466021
关于积分的说明 13895204
捐赠科研通 4358353
什么是DOI,文献DOI怎么找? 2394037
邀请新用户注册赠送积分活动 1387459
关于科研通互助平台的介绍 1358320