Convex Hull Aided Registration Method (CHARM)

兰萨克 凸壳 点集注册 计算机科学 刚性变换 计算机视觉 人工智能 特征(语言学) 离群值 花键(机械) 算法 数学 点(几何) 正多边形 几何学 结构工程 图像(数学) 语言学 工程类 哲学
作者
Jingfan Fan,Jian Yang,Yitian Zhao,Danni Ai,Yonghuai Liu,Ge Wang,Yongtian Wang
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 2042-2055 被引量:18
标识
DOI:10.1109/tvcg.2016.2602858
摘要

Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. First, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve non-rigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricarvi9完成签到,获得积分10
刚刚
SciGPT应助花花采纳,获得10
2秒前
文静发布了新的文献求助10
3秒前
否极泰来完成签到,获得积分10
4秒前
笑嘻嘻发布了新的文献求助20
4秒前
5秒前
stretchability完成签到,获得积分10
5秒前
VDC应助小杨采纳,获得50
6秒前
禹子骞完成签到,获得积分10
6秒前
6秒前
天天快乐应助33采纳,获得10
7秒前
灵活puppy发布了新的文献求助10
7秒前
lululala发布了新的文献求助20
8秒前
打打应助ebangdeng采纳,获得10
11秒前
Gengar完成签到,获得积分10
11秒前
13秒前
我有柳叶刀完成签到,获得积分10
15秒前
笑一笑完成签到,获得积分0
15秒前
星辰大海应助lina采纳,获得10
16秒前
Muller完成签到,获得积分10
18秒前
19秒前
21秒前
汉堡包应助大橘采纳,获得10
21秒前
我是老大应助QF采纳,获得10
22秒前
田様应助lee采纳,获得10
22秒前
22秒前
23秒前
33发布了新的文献求助10
23秒前
ebangdeng发布了新的文献求助10
25秒前
Mr.Reese完成签到,获得积分10
26秒前
Ava应助byduan采纳,获得10
27秒前
多情老三发布了新的文献求助20
27秒前
曾经向卉完成签到,获得积分10
28秒前
自觉馒头完成签到,获得积分10
28秒前
汉堡包应助bbo采纳,获得10
29秒前
万能图书馆应助yyyq0721采纳,获得10
30秒前
30秒前
30秒前
30秒前
cherry完成签到,获得积分10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240186
求助须知:如何正确求助?哪些是违规求助? 2885221
关于积分的说明 8237360
捐赠科研通 2553498
什么是DOI,文献DOI怎么找? 1381664
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 625009