Automatic Detection and Classification of Colorectal Polyps by Transferring Low-Level CNN Features From Nonmedical Domain

计算机科学 增生性息肉 医学 大肠息肉 结肠镜检查 人工智能 腺瘤 放射科 结直肠癌 内科学 癌症
作者
Ruikai Zhang,Yali Zheng,Tony Wing Chung Mak,Ruoxi Yu,Sunny H. Wong,James Lau,Carmen C. Y. Poon
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 41-47 被引量:317
标识
DOI:10.1109/jbhi.2016.2635662
摘要

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Although polypectomy at early stage reduces CRC incidence, 90% of the polyps are small and diminutive, where removal of them poses risks to patients that may outweigh the benefits. Correctly detecting and predicting polyp type during colonoscopy allows endoscopists to resect and discard the tissue without submitting it for histology, saving time, and costs. Nevertheless, human visual observation of early stage polyps varies. Therefore, this paper aims at developing a fully automatic algorithm to detect and classify hyperplastic and adenomatous colorectal polyps. Adenomatous polyps should be removed, whereas distal diminutive hyperplastic polyps are considered clinically insignificant and may be left in situ . A novel transfer learning application is proposed utilizing features learned from big nonmedical datasets with 1.4-2.5 million images using deep convolutional neural network. The endoscopic images we collected for experiment were taken under random lighting conditions, zooming and optical magnification, including 1104 endoscopic nonpolyp images taken under both white-light and narrowband imaging (NBI) endoscopy and 826 NBI endoscopic polyp images, of which 263 images were hyperplasia and 563 were adenoma as confirmed by histology. The proposed method identified polyp images from nonpolyp images in the beginning followed by predicting the polyp histology. When compared with visual inspection by endoscopists, the results of this study show that the proposed method has similar precision (87.3% versus 86.4%) but a higher recall rate (87.6% versus 77.0%) and a higher accuracy (85.9% versus 74.3%). In conclusion, automatic algorithms can assist endoscopists in identifying polyps that are adenomatous but have been incorrectly judged as hyperplasia and, therefore, enable timely resection of these polyps at an early stage before they develop into invasive cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助TIGun采纳,获得10
1秒前
研友_VZG7GZ应助小田心采纳,获得10
2秒前
joan发布了新的文献求助30
2秒前
robin发布了新的文献求助10
2秒前
xkxkii发布了新的文献求助10
2秒前
2秒前
Blank发布了新的文献求助10
3秒前
山花浪漫应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
娃哈哈完成签到,获得积分10
4秒前
彭于彦祖应助科研通管家采纳,获得20
5秒前
chanyi完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
神明发布了新的文献求助30
5秒前
6秒前
情怀应助小刘要加油采纳,获得10
7秒前
ni发布了新的文献求助10
8秒前
早晚炸了学校完成签到 ,获得积分10
8秒前
123669发布了新的文献求助10
9秒前
棠小茗完成签到 ,获得积分20
10秒前
英俊的老太完成签到,获得积分10
10秒前
10秒前
10秒前
yyd发布了新的文献求助10
11秒前
科研通AI5应助神明采纳,获得10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882