EMP Emergence from Hemogenic Endothelium in the Mammalian Yolk Sac Is Independent of Flow and Arterial Identity, but Is Regulated By Canonical Wnt Signaling

运行x1 生物 川地31 细胞生物学 内皮 祖细胞 干细胞 卵黄囊 血管母细胞 内皮干细胞 解剖 胚胎干细胞 造血 血管生成 免疫学 胚胎 癌症研究 遗传学 体外 基因
作者
Jenna M. Frame,Kathleen E. McGrath,Katherine H. Fegan,James Palis
出处
期刊:Blood [American Society of Hematology]
卷期号:124 (21): 768-768 被引量:1
标识
DOI:10.1182/blood.v124.21.768.768
摘要

Abstract Hematopoietic stem cells (HSCs) emerge from arterial vessels of the mouse embryo through a Runx1-dependent process of endothelial-to-hematopoietic transition beginning at embryonic day 10.5 (E10.5). This arterial endothelial-to-hematopoietic transition is known to require embryonic circulation as well as beta-catenin signaling within the endothelial precursor, known as hemogenic endothelium. However, embryonic survival is dependent on the earlier emergence of a robust wave of yolk sac-derived definitive erythro-myeloid progenitors (EMPs), which have unilineage as well as multilineage potential, including high-proliferative potential colony forming cell (HPP-CFC) potential (Palis et al., PNAS, 2001). Like HSCs, EMP specification is dependent on Runx1, suggesting that they also emerge from a hemogenic endothelial precursor. However, the spatial localization of EMPs in the yolk sac and the mechanisms governing their emergence are not well understood. To visualize emerging EMPs in the yolk sac, we performed whole-mount immunohistochemistry for Kit, which we have demonstrated to contain nearly all EMP potential at E9.5. Kit+ cells coexpress Runx1 and CD31, and a subset have a polygonal/endothelial morphology, appear integrated into the vascular network, and are associated with rounded Kit+ cells in clusters, features consistent with an endothelial-to-hematopoietic transition. However, unlike HSCs, which emerge from major embryonic arteries, clusters of EMPs are located in larger and smaller caliber vessels in branches of both the arterial and venous vasculature, which is spatially organized within the yolk sac. To determine if EMP emergence from the vasculature is dependent on embryonic blood flow, which is required for HSC emergence, we analyzed the yolk sacs of Ncx1-null embryos, which fail to initiate heart contractions and subsequently lack embryonic circulation. Despite the lack of vascular remodeling in these circulation-deficient yolk sacs, Ncx1-null EMPs displayed normal cluster morphology, including both polygonal and rounded kit+ cells, indicating the endothelial-to-hematopoietic transition can occur without the mechanical influence of blood flow. To address whether EMP formation is responsive to other developmental signals, we utilized a yolk sac explant culture to evaluate the propensity of hemogenic endothelial cells to commit to hematopoiesis ex vivo. Culture of intact E8.5 yolk sacs for 48 hours with the canonical Wnt ligand Wnt3a resulted in an increase in both day 6-7 colony forming cells and day 13-14 HPP-CFC when compared with control yolk sacs. Preliminary treatment with Dkk1 alone did not adversely affect colony-forming activity when compared with untreated yolk sacs, and potentiation of endogenous canonical Wnt signaling with HLY78 did not augment colony production, suggesting that low levels of endogenous Wnt ligands are produced ex vivo. Despite the positive effect of Wnt3a on whole yolk sacs, treatment of isolated E9.5 Kit+CD41+CD16/32+ EMPs with Wnt3a did not increase colony formation, suggesting that Wnt signaling augments progenitor production at, or prior to, the hemogenic endothelial stage. Preliminary results utilizing imaging flow cytometry demonstrated increased beta-catenin intensity within the nuclear region in E9.5 Kit+VE-Cadherin/AA4.1+ endothelium following Wnt3a treatment, suggesting that hemogenic endothelial cells in the yolk sac are Wnt responsive. Consistent with this finding, in vitro Wnt3a treatment on primary E8.5-9.5 VE-Cadherin/AA4.1+CD16/32- endothelial cells resulted in upregulation of the beta-catenin target gene Axin2. To address whether Wnt signaling is endogenously active in vivo, we analyzed E8.5-E9 yolk sacs of BAT-gal reporter mice (Maretto et al., PNAS, 2003), and visualized a subset of cells with endothelial morphology expressing LacZ. Taken together, these data support the concept that EMPs, like HSCs, emerge from hemogenic endothelium. Surprisingly, this earlier endothelial-to-hematopoietic transition in the yolk sac is not dependent on blood flow or an arterial identity. However, similar to HSC emergence, EMP emergence from hemogenic endothelium is positively regulated by canonical Wnt signaling. These data highlight the presence of spatially, temporally, and functionally heterogeneous populations of hemogenic endothelium in the mammalian conceptus. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
marry发布了新的文献求助10
1秒前
1秒前
ljy2015发布了新的文献求助10
2秒前
Lvhao应助llyy采纳,获得30
3秒前
3秒前
4秒前
4秒前
陈佳年完成签到 ,获得积分10
5秒前
万能图书馆应助vivianxy采纳,获得10
6秒前
苏敢敢发布了新的文献求助10
6秒前
6秒前
一二三完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得30
8秒前
Tian&完成签到 ,获得积分10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
zhangwei应助科研通管家采纳,获得10
8秒前
小二郎应助Dc采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
tuanheqi应助科研通管家采纳,获得50
8秒前
orixero应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
一二三发布了新的文献求助10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
JamesPei应助hu采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
李健应助123456采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
10秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155576
求助须知:如何正确求助?哪些是违规求助? 2806779
关于积分的说明 7870685
捐赠科研通 2465047
什么是DOI,文献DOI怎么找? 1312118
科研通“疑难数据库(出版商)”最低求助积分说明 629877
版权声明 601892