A novel strategy for designing the magic shotguns for distantly related target pairs

药物发现 计算机科学 虚拟筛选 计算生物学 聚类分析 化学 相似性(几何) 药物重新定位 过程(计算) 生物信息学 药物靶点 数据挖掘 机器学习 人工智能 生物 生物信息学 药品 遗传学 基因 图像(数学) 操作系统 药理学
作者
Yongchao Luo,Panpan Wang,Minjie Mou,Hanqi Zheng,Jiajun Hong,Lin Tao,Feng Zhu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:12
标识
DOI:10.1093/bib/bbac621
摘要

Abstract Due to its promising capacity in improving drug efficacy, polypharmacology has emerged to be a new theme in the drug discovery of complex disease. In the process of novel multi-target drugs (MTDs) discovery, in silico strategies come to be quite essential for the advantage of high throughput and low cost. However, current researchers mostly aim at typical closely related target pairs. Because of the intricate pathogenesis networks of complex diseases, many distantly related targets are found to play crucial role in synergistic treatment. Therefore, an innovational method to develop drugs which could simultaneously target distantly related target pairs is of utmost importance. At the same time, reducing the false discovery rate in the design of MTDs remains to be the daunting technological difficulty. In this research, effective small molecule clustering in the positive dataset, together with a putative negative dataset generation strategy, was adopted in the process of model constructions. Through comprehensive assessment on 10 target pairs with hierarchical similarity-levels, the proposed strategy turned out to reduce the false discovery rate successfully. Constructed model types with much smaller numbers of inhibitor molecules gained considerable yields and showed better false-hit controllability than before. To further evaluate the generalization ability, an in-depth assessment of high-throughput virtual screening on ChEMBL database was conducted. As a result, this novel strategy could hierarchically improve the enrichment factors for each target pair (especially for those distantly related/unrelated target pairs), corresponding to target pair similarity-levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
112发布了新的文献求助10
刚刚
happy发布了新的文献求助10
刚刚
刚刚
1秒前
安静绿蓉完成签到,获得积分10
1秒前
慕容博完成签到 ,获得积分10
1秒前
1秒前
cccxxx完成签到,获得积分10
1秒前
bkagyin应助嘻嘻哈哈采纳,获得30
1秒前
2秒前
2秒前
2秒前
执着的芷云完成签到,获得积分10
3秒前
张文博发布了新的文献求助10
3秒前
利好完成签到 ,获得积分10
3秒前
yizhizmd完成签到,获得积分10
3秒前
4秒前
4秒前
TRY发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
萌酱发布了新的文献求助10
5秒前
赘婿应助fan采纳,获得10
5秒前
优秀灵竹完成签到,获得积分10
6秒前
双手外科结完成签到,获得积分10
6秒前
山橘月发布了新的文献求助10
6秒前
ocean发布了新的文献求助10
6秒前
寒冷的灭绝完成签到,获得积分10
6秒前
幽芊细雨完成签到,获得积分10
6秒前
mengloo发布了新的文献求助10
6秒前
wanghui发布了新的文献求助10
7秒前
可青完成签到,获得积分10
7秒前
英俊的铭应助Coolkid2001采纳,获得30
8秒前
李爱国应助文静的白开水采纳,获得10
8秒前
Mason发布了新的文献求助10
8秒前
大个应助LHD采纳,获得10
8秒前
传奇3应助科研小白菜采纳,获得10
8秒前
9秒前
lin完成签到,获得积分10
9秒前
夕痕完成签到,获得积分10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661487
求助须知:如何正确求助?哪些是违规求助? 3222499
关于积分的说明 9746283
捐赠科研通 2932184
什么是DOI,文献DOI怎么找? 1605480
邀请新用户注册赠送积分活动 757926
科研通“疑难数据库(出版商)”最低求助积分说明 734579