Rotor Fault Diagnosis Method Based on VMD Symmetrical Polar Image and Fuzzy Neural Network

模式识别(心理学) 人工智能 特征提取 人工神经网络 模糊逻辑 计算机科学 稳健性(进化) 断层(地质) 极坐标系 算法 数学 生物化学 化学 地震学 地质学 基因 几何学
作者
Xiaolong Zhou,Xiangkun Wang,Haotian Wang,Linlin Cao,Zhongyuan Xing,Zhen Yang
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (2): 1134-1134 被引量:1
标识
DOI:10.3390/app13021134
摘要

Rotor fault diagnosis has attracted much attention due to its difficulties such as non-stationarity of fault signals, difficulty in fault feature extraction and low diagnostic accuracy of small samples. In order to extract fault feature information of rotors more effectively and to improve fault diagnosis precision, this paper proposed a fault diagnosis method based on variational mode decomposition (VMD) symmetrical polar image and fuzzy neural network. Firstly, the original rotor vibration signal is decomposed by using the VMD method and the relevant parameter selection algorithm of the VMD method is also proposed. Secondly, the intrinsic mode functions (IMF), which are sensitive to the signal characteristics, are selected for signal reconstruction based on a comprehensive evaluation factor method. As well, the reconstructed signal is transformed into a two-dimensional snowflake image through using the symmetrical polar coordinate method. Finally, the image features are extracted by the gray level co-occurrence matrix to form the state feature vector, which is input into the fuzzy neural network to realize the rotor fault diagnosis. Through the analysis of measured signals, the experimental results show that the proposed method can reach a higher recognition rate of 98% and the k-cross-validation experiment is used to demonstrate the robustness of the fuzzy neural network, and the average recognition accuracy of this experiment is 99.2%. Compared with some similar methods, the proposed method still has the highest fault recognition precision 98.4%, and the smallest standard deviation 0.5477.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜的火龙果完成签到,获得积分10
1秒前
1秒前
呵呵完成签到,获得积分10
1秒前
Dingz完成签到,获得积分10
1秒前
乐乐应助郭倩采纳,获得10
1秒前
2秒前
何仁杰完成签到,获得积分10
2秒前
2秒前
紧张的铅笔完成签到,获得积分10
2秒前
子卿完成签到,获得积分0
2秒前
大个应助爱听歌的亦玉采纳,获得10
3秒前
4秒前
lull发布了新的文献求助10
4秒前
4秒前
李先森完成签到,获得积分10
4秒前
0957完成签到,获得积分10
5秒前
WW发布了新的文献求助10
6秒前
kingyuan完成签到,获得积分10
6秒前
沉静的向秋完成签到,获得积分10
6秒前
Evan完成签到 ,获得积分10
6秒前
MarIe完成签到,获得积分10
6秒前
于浩发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Wxxxxx发布了新的文献求助30
8秒前
NexusExplorer应助Dearjw1655采纳,获得10
9秒前
爱笑秀发发布了新的文献求助10
10秒前
dominate完成签到,获得积分10
11秒前
swsx发布了新的文献求助10
12秒前
汉堡包应助lixiang采纳,获得10
13秒前
14秒前
15秒前
朴实如冰完成签到 ,获得积分10
15秒前
15秒前
FashionBoy应助研友_LMyRPL采纳,获得30
15秒前
语音助手发布了新的文献求助10
15秒前
16秒前
PFD000发布了新的文献求助10
16秒前
共享精神应助飞快的寒香采纳,获得10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230573
求助须知:如何正确求助?哪些是违规求助? 2877975
关于积分的说明 8203640
捐赠科研通 2545364
什么是DOI,文献DOI怎么找? 1375054
科研通“疑难数据库(出版商)”最低求助积分说明 647249
邀请新用户注册赠送积分活动 622264