Rotor Fault Diagnosis Method Based on VMD Symmetrical Polar Image and Fuzzy Neural Network

模式识别(心理学) 人工智能 特征提取 人工神经网络 模糊逻辑 计算机科学 稳健性(进化) 断层(地质) 极坐标系 算法 数学 生物化学 化学 地震学 地质学 基因 几何学
作者
Xiaolong Zhou,Xiangkun Wang,Haotian Wang,Linlin Cao,Zhongyuan Xing,Zhen Yang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (2): 1134-1134 被引量:1
标识
DOI:10.3390/app13021134
摘要

Rotor fault diagnosis has attracted much attention due to its difficulties such as non-stationarity of fault signals, difficulty in fault feature extraction and low diagnostic accuracy of small samples. In order to extract fault feature information of rotors more effectively and to improve fault diagnosis precision, this paper proposed a fault diagnosis method based on variational mode decomposition (VMD) symmetrical polar image and fuzzy neural network. Firstly, the original rotor vibration signal is decomposed by using the VMD method and the relevant parameter selection algorithm of the VMD method is also proposed. Secondly, the intrinsic mode functions (IMF), which are sensitive to the signal characteristics, are selected for signal reconstruction based on a comprehensive evaluation factor method. As well, the reconstructed signal is transformed into a two-dimensional snowflake image through using the symmetrical polar coordinate method. Finally, the image features are extracted by the gray level co-occurrence matrix to form the state feature vector, which is input into the fuzzy neural network to realize the rotor fault diagnosis. Through the analysis of measured signals, the experimental results show that the proposed method can reach a higher recognition rate of 98% and the k-cross-validation experiment is used to demonstrate the robustness of the fuzzy neural network, and the average recognition accuracy of this experiment is 99.2%. Compared with some similar methods, the proposed method still has the highest fault recognition precision 98.4%, and the smallest standard deviation 0.5477.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
xzy998应助科研通管家采纳,获得10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
xzy998应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
imchenyin发布了新的文献求助10
3秒前
4秒前
4秒前
畅快的不言完成签到,获得积分10
4秒前
美满平灵发布了新的文献求助30
5秒前
wanci应助风的味道采纳,获得10
5秒前
伴奏小胖完成签到 ,获得积分10
5秒前
Hello应助wangteng采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
wawaeryu发布了新的文献求助10
8秒前
8秒前
lay发布了新的文献求助10
9秒前
Wenhao发布了新的文献求助10
9秒前
imchenyin完成签到,获得积分10
9秒前
海绵宝宝完成签到,获得积分10
9秒前
小飞飞发布了新的文献求助10
9秒前
卷卷关注了科研通微信公众号
10秒前
风兮雨完成签到,获得积分10
10秒前
Alen完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180