Pairwise attention-enhanced adversarial model for automatic bone segmentation in CT images

分割 计算机科学 人工智能 鉴别器 成对比较 解析 模式识别(心理学) 图像分割 尺度空间分割 计算机视觉 电信 探测器
作者
Cheng Chen,Siyu Qi,Kangneng Zhou,Tong Lu,Huansheng Ning,Ruoxiu Xiao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (3): 035019-035019 被引量:9
标识
DOI:10.1088/1361-6560/acb2ab
摘要

Abstract Objective . Bone segmentation is a critical step in screw placement navigation. Although the deep learning methods have promoted the rapid development for bone segmentation, the local bone separation is still challenging due to irregular shapes and similar representational features. Approach . In this paper, we proposed the pairwise attention-enhanced adversarial model (Pair-SegAM) for automatic bone segmentation in computed tomography images, which includes the two parts of the segmentation model and discriminator. Considering that the distributions of the predictions from the segmentation model contains complicated semantics, we improve the discriminator to strengthen the awareness ability of the target region, improving the parsing of semantic information features. The Pair-SegAM has a pairwise structure, which uses two calculation mechanics to set up pairwise attention maps, then we utilize the semantic fusion to filter unstable regions. Therefore, the improved discriminator provides more refinement information to capture the bone outline, thus effectively enhancing the segmentation models for bone segmentation. Main results . To test the Pair-SegAM, we selected the two bone datasets for assessment. We evaluated our method against several bone segmentation models and latest adversarial models on the both datasets. The experimental results prove that our method not only exhibits superior bone segmentation performance, but also states effective generalization. Significance . Our method provides a more efficient segmentation of specific bones and has the potential to be extended to other semantic segmentation domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海带发布了新的文献求助10
刚刚
刚刚
陈陈陈完成签到 ,获得积分10
2秒前
佛了欢喜发布了新的文献求助10
2秒前
4秒前
5秒前
zhangwansen发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
万能图书馆应助jiang采纳,获得10
7秒前
李健应助win采纳,获得10
8秒前
毅然决然必然完成签到,获得积分10
8秒前
8秒前
归海若完成签到,获得积分10
8秒前
爆米花应助Z17采纳,获得10
9秒前
Espionage完成签到,获得积分10
11秒前
11秒前
jike发布了新的文献求助10
11秒前
11秒前
dong应助Cheney采纳,获得10
11秒前
知性的绮兰完成签到,获得积分10
11秒前
一缕阳光完成签到,获得积分10
11秒前
整齐乌发布了新的文献求助10
12秒前
13秒前
子苓发布了新的文献求助10
14秒前
Pluto完成签到,获得积分10
14秒前
JamesPei应助Sun采纳,获得10
14秒前
火山完成签到,获得积分10
16秒前
万能图书馆应助Eternitymaria采纳,获得10
17秒前
一罐樱桃酱完成签到,获得积分10
19秒前
cl发布了新的文献求助10
20秒前
浪人情歌完成签到,获得积分20
21秒前
wang完成签到,获得积分10
22秒前
夏姬宁静完成签到,获得积分10
23秒前
激昂的如柏完成签到,获得积分10
23秒前
zww完成签到,获得积分10
23秒前
24秒前
ycccccc完成签到 ,获得积分10
24秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010813
求助须知:如何正确求助?哪些是违规求助? 3550492
关于积分的说明 11305855
捐赠科研通 3284855
什么是DOI,文献DOI怎么找? 1810889
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811505