Pairwise attention-enhanced adversarial model for automatic bone segmentation in CT images

分割 计算机科学 人工智能 鉴别器 成对比较 解析 模式识别(心理学) 图像分割 尺度空间分割 计算机视觉 电信 探测器
作者
Cheng Chen,Siyu Qi,Kangneng Zhou,Tong Lu,Huansheng Ning,Ruoxiu Xiao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (3): 035019-035019 被引量:9
标识
DOI:10.1088/1361-6560/acb2ab
摘要

Abstract Objective . Bone segmentation is a critical step in screw placement navigation. Although the deep learning methods have promoted the rapid development for bone segmentation, the local bone separation is still challenging due to irregular shapes and similar representational features. Approach . In this paper, we proposed the pairwise attention-enhanced adversarial model (Pair-SegAM) for automatic bone segmentation in computed tomography images, which includes the two parts of the segmentation model and discriminator. Considering that the distributions of the predictions from the segmentation model contains complicated semantics, we improve the discriminator to strengthen the awareness ability of the target region, improving the parsing of semantic information features. The Pair-SegAM has a pairwise structure, which uses two calculation mechanics to set up pairwise attention maps, then we utilize the semantic fusion to filter unstable regions. Therefore, the improved discriminator provides more refinement information to capture the bone outline, thus effectively enhancing the segmentation models for bone segmentation. Main results . To test the Pair-SegAM, we selected the two bone datasets for assessment. We evaluated our method against several bone segmentation models and latest adversarial models on the both datasets. The experimental results prove that our method not only exhibits superior bone segmentation performance, but also states effective generalization. Significance . Our method provides a more efficient segmentation of specific bones and has the potential to be extended to other semantic segmentation domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助sally采纳,获得10
2秒前
xiaoxin发布了新的文献求助10
2秒前
机灵饼干发布了新的文献求助150
3秒前
anna1992发布了新的文献求助10
3秒前
5秒前
6秒前
Jasper应助xiaoxin采纳,获得10
7秒前
9秒前
hbhbj应助小菜瓜采纳,获得20
10秒前
葵花籽完成签到,获得积分10
11秒前
keeeeeeeli发布了新的文献求助10
12秒前
12秒前
独特的初彤完成签到 ,获得积分10
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
小青椒应助科研通管家采纳,获得100
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
凤凰应助科研通管家采纳,获得30
16秒前
wanci应助松松松采纳,获得50
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
WB87应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
WB87应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
NiL应助科研通管家采纳,获得10
17秒前
17秒前
英俊的铭应助xxm采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
Hilda007应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
cheese完成签到 ,获得积分10
17秒前
18秒前
18秒前
受伤问凝完成签到 ,获得积分10
21秒前
梨花酒完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637