辐射压力
矿物粉尘
环境科学
气候变化
大气科学
气候敏感性
气候模式
地球的能源预算
气候学
温室气体
全球变暖
辐射传输
冰层
代表性浓度途径
全球变化
强迫(数学)
气溶胶
气象学
地理
地质学
辐射
物理
海冰
海洋学
量子力学
作者
Jasper F. Kok,Trude Storelvmo,Vlassis A. Karydis,Adeyemi A. Adebiyi,N. M. Mahowald,Amato T. Evan,Cenlin He,Danny M. Leung
标识
DOI:10.1038/s43017-022-00379-5
摘要
Mineral dust aerosols impact the energy budget of Earth through interactions with radiation, clouds, atmospheric chemistry, the cryosphere and biogeochemistry. In this Review, we summarize these interactions and assess the resulting impacts of dust, and of changes in dust, on global climate and climate change. The total effect of dust interactions on the global energy budget of Earth — the dust effective radiative effect — is −0.2 ± 0.5 W m−2 (90% confidence interval), suggesting that dust net cools the climate. Global dust mass loading has increased 55 ± 30% since pre-industrial times, driven largely by increases in dust from Asia and North Africa, leading to changes in the energy budget of Earth. Indeed, this increase in dust has produced a global mean effective radiative forcing of −0.07 ± 0.18 W m−2, somewhat counteracting greenhouse warming. Current climate models and climate assessments do not represent the historical increase in dust and thus omit the resulting radiative forcing, biasing climate change projections and assessments of climate sensitivity. Climate model simulations of future changes in dust diverge widely and are very uncertain. Further work is thus needed to constrain the radiative effects of dust on climate and to improve the representation of dust in climate models. Dust influences the global energy budget through various Earth system interactions. This Review outlines these interactions, revealing a total radiative effect of −0.2 ± 0.5 W m−2, which, alongside 55 ± 30% historical increases in dust, have contributed a radiative forcing of −0.07 ± 0.18 W m−2.
科研通智能强力驱动
Strongly Powered by AbleSci AI