分形
数学
捕食
理论(学习稳定性)
应用数学
非线性系统
趋同(经济学)
操作员(生物学)
捕食者
订单(交换)
统计物理学
数学分析
生态学
计算机科学
物理
生物
经济
财务
生物化学
抑制因子
机器学习
经济增长
基因
转录因子
量子力学
作者
Zeeshan Ali,Faranak Rabiei,K. Hosseini
标识
DOI:10.1016/j.matcom.2023.01.006
摘要
This manuscript aims to study a modified predator–prey model’s existence, stability, and dynamics under the newly developed fractal–fractional order operator in the Caputo–Fabrizio sense. The existence theory of the proposed model carries out through the Leray–Schauder alternative and sufficient conditions for stability are established using the classical technique of nonlinear functional analysis. The numerical results are obtained by the fractal–fractional Adam–Bashforth method in the Caputo–Fabrizio sense. The numerical results show that small immigrations invoke stable convergence in the predator–prey ecosystem. This means that a small number of sporadic immigrants can stabilize natural predator–prey populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI