Prognostic Value of the Radiomics-Based Model in the Disease-Free Survival of Pretreatment Uveal Melanoma: An Initial Result

医学 列线图 置信区间 危险系数 一致性 比例危险模型 无线电技术 磁共振成像 核医学 队列 黑色素瘤 内科学 弗雷明翰风险评分 肿瘤科 放射科 疾病 癌症研究
作者
Yaping Su,Xiaolin Xu,Fang Wang,Panli Zuo,Qinghua Chen,Wenbin Wei,Junfang Xian
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (1): 151-159 被引量:1
标识
DOI:10.1097/rct.0000000000001384
摘要

Objective The aim of this study was to develop a pretreatment magnetic resonance imaging (MRI)–based radiomics model for disease-free survival (DFS) prediction in patients with uveal melanoma (UM). Methods We randomly assigned 85 patients with UM into 2 cohorts: training (n = 60) and validation (n = 25). The radiomics model was built from significant features that were selected from the training cohort by applying a least absolute shrinkage and selection operator to pretreatment MRI scans. Least absolute shrinkage and selection operator regression and the Cox proportional hazard model were used to construct a radiomics score (rad-score). Patients were divided into a low- or a high-risk group based on the median of the rad-score. The Kaplan-Meier analysis was used to evaluate the association between the rad-score and DFS. A nomogram incorporating the rad-score and MRI features was plotted to individually estimate DFS. The model's discrimination power was assessed using the concordance index. Results The radiomics model with 15 optimal radiomics features based on MRI performed well in stratifying patients into the high- or a low-risk group of DFS in both the training and validation cohorts (log-rank test, P = 0.009 and P = 0.02, respectively). Age, basal diameter, and height were selected as significant clinical and MRI features. The nomogram showed good predictive performance with concordance indices of 0.741 (95% confidence interval, 0.637–0.845) and 0.912 (95% confidence interval, 0.847–0.977) in the training and validation cohorts, respectively. Calibration curves demonstrated good agreement. Conclusion The developed clinical-radiomics model may be a powerful predictor of the DFS of patients with UM, thereby providing evidence for preoperative risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tira完成签到,获得积分10
刚刚
SciGPT应助23采纳,获得10
刚刚
科研cc完成签到,获得积分20
1秒前
咕噜仔发布了新的文献求助10
1秒前
牛肉干关注了科研通微信公众号
2秒前
cherry发布了新的文献求助10
2秒前
2秒前
科研通AI5应助fxx2021采纳,获得10
2秒前
斯文败类应助黎缘采纳,获得10
2秒前
3秒前
2090完成签到,获得积分10
3秒前
3秒前
Lynn完成签到,获得积分10
4秒前
卷心菜完成签到,获得积分10
5秒前
Patrick完成签到,获得积分10
5秒前
从容襄完成签到,获得积分10
5秒前
6秒前
核桃酥完成签到,获得积分20
6秒前
华仔应助王汉韬采纳,获得10
6秒前
6秒前
andyxrz发布了新的文献求助10
7秒前
醉舞烟罗发布了新的文献求助10
7秒前
7秒前
7秒前
yaoyao完成签到 ,获得积分20
8秒前
阳光总在风雨后完成签到,获得积分10
8秒前
洁净路灯完成签到 ,获得积分10
8秒前
11111完成签到,获得积分10
9秒前
黄豆芽完成签到,获得积分20
10秒前
xlx发布了新的文献求助10
10秒前
诚心闭月完成签到,获得积分10
10秒前
11秒前
11秒前
小中完成签到,获得积分10
11秒前
Akim应助Jin采纳,获得10
11秒前
zyj完成签到,获得积分10
12秒前
MrFamous发布了新的文献求助10
12秒前
fxx2021完成签到,获得积分10
12秒前
lbx发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672