Prognostic Value of the Radiomics-Based Model in the Disease-Free Survival of Pretreatment Uveal Melanoma: An Initial Result

医学 列线图 置信区间 危险系数 一致性 比例危险模型 无线电技术 磁共振成像 核医学 队列 黑色素瘤 内科学 弗雷明翰风险评分 肿瘤科 放射科 疾病 癌症研究
作者
Yaping Su,Xiaolin Xu,Fang Wang,Panli Zuo,Qinghua Chen,Wenbin Wei,Junfang Xian
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (1): 151-159 被引量:1
标识
DOI:10.1097/rct.0000000000001384
摘要

Objective The aim of this study was to develop a pretreatment magnetic resonance imaging (MRI)–based radiomics model for disease-free survival (DFS) prediction in patients with uveal melanoma (UM). Methods We randomly assigned 85 patients with UM into 2 cohorts: training (n = 60) and validation (n = 25). The radiomics model was built from significant features that were selected from the training cohort by applying a least absolute shrinkage and selection operator to pretreatment MRI scans. Least absolute shrinkage and selection operator regression and the Cox proportional hazard model were used to construct a radiomics score (rad-score). Patients were divided into a low- or a high-risk group based on the median of the rad-score. The Kaplan-Meier analysis was used to evaluate the association between the rad-score and DFS. A nomogram incorporating the rad-score and MRI features was plotted to individually estimate DFS. The model's discrimination power was assessed using the concordance index. Results The radiomics model with 15 optimal radiomics features based on MRI performed well in stratifying patients into the high- or a low-risk group of DFS in both the training and validation cohorts (log-rank test, P = 0.009 and P = 0.02, respectively). Age, basal diameter, and height were selected as significant clinical and MRI features. The nomogram showed good predictive performance with concordance indices of 0.741 (95% confidence interval, 0.637–0.845) and 0.912 (95% confidence interval, 0.847–0.977) in the training and validation cohorts, respectively. Calibration curves demonstrated good agreement. Conclusion The developed clinical-radiomics model may be a powerful predictor of the DFS of patients with UM, thereby providing evidence for preoperative risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨落瑾年完成签到,获得积分10
刚刚
刚刚
1秒前
CDH发布了新的文献求助10
1秒前
NNN完成签到,获得积分10
2秒前
桐桐应助amy采纳,获得10
2秒前
2秒前
xxm发布了新的文献求助10
2秒前
踏实奇异果完成签到,获得积分10
2秒前
3秒前
苏景柚完成签到,获得积分10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得20
4秒前
无花果应助科研通管家采纳,获得20
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
z3Q应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
5秒前
温暖汽车完成签到,获得积分10
5秒前
2ilo_应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
z3Q应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
孟丹完成签到 ,获得积分10
6秒前
王弘化应助忧郁老默采纳,获得10
6秒前
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945353
关于积分的说明 8524838
捐赠科研通 2621121
什么是DOI,文献DOI怎么找? 1433353
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650388