已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation

分割 索引(排版) 植被(病理学) 计算机科学 草坪 地理 人工智能 计算机视觉 遥感 万维网 植物 医学 生物 病理
作者
Tetsuya Aikoh,Ryota Homma,Yoshiki Abe
出处
期刊:Urban Forestry & Urban Greening [Elsevier BV]
卷期号:80: 127845-127845 被引量:21
标识
DOI:10.1016/j.ufug.2023.127845
摘要

Urban greenery has various beneficial effects, such as engendering peace of mind. The green view index (GVI) effectively measures the amount of greenery people can perceive and is a suitable indicator of urban greening. To date, the most common way to measure the GVI has been to photograph the street environment from eye level and use image-editing software to calculate the area occupied by vegetation. However, conventional methods are time-consuming and labor-intensive, and the calculation results may vary among individuals. In recent years, the use of Google Street View (GSV) photos and calculation of the GVI using automatic image segmentation have rapidly developed. In this study, we demonstrate the advantages of GSV and image segmentation over conventional methods, verify their accuracy, and identify the shortcomings of modern methods. We calculated the GVI in the central part of Sapporo, Japan, using the automatic image segmentation AI “DeepLab” and compared the results with those measured by Photoshop. At the exact GSV locations, we also acquired photos and again calculated the GVI using AI, subsequently comparing the results with those obtained on-site manually. Although the correlations were high, automatic image segmentation tended not to identify lawns and flowers planted in the ground as vegetation. It was impossible to determine the year when the GSV photos were taken. In addition, the distance to greenery was biased, depending on the position on the street. These points should be considered when using these modern methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
的更换为完成签到,获得积分20
2秒前
Vicky完成签到 ,获得积分10
3秒前
副本完成签到 ,获得积分10
3秒前
miumiu完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
沉默的便当完成签到 ,获得积分10
6秒前
司空天德发布了新的文献求助10
6秒前
慕青应助bio采纳,获得10
7秒前
龅牙苏发布了新的文献求助10
8秒前
JonStark发布了新的文献求助10
9秒前
迷人的Jack发布了新的文献求助10
10秒前
泡泡糖完成签到 ,获得积分10
10秒前
xjx发布了新的文献求助10
10秒前
10秒前
炳楷发布了新的文献求助30
11秒前
decade发布了新的文献求助10
11秒前
12秒前
龅牙苏完成签到,获得积分10
15秒前
15秒前
Ye发布了新的文献求助10
16秒前
传奇3应助炳楷采纳,获得10
17秒前
decade完成签到,获得积分10
18秒前
JonStark完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
happy完成签到 ,获得积分10
24秒前
caffeine发布了新的文献求助10
24秒前
25秒前
不想吃辣发布了新的文献求助10
26秒前
Wangyingjie5完成签到,获得积分10
27秒前
蝴蝶与猫关注了科研通微信公众号
27秒前
失眠依珊完成签到,获得积分10
27秒前
gm9915完成签到,获得积分10
27秒前
30秒前
皮夏寒发布了新的文献求助10
30秒前
32秒前
所所应助琅琊为刃采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609957
求助须知:如何正确求助?哪些是违规求助? 4016141
关于积分的说明 12434394
捐赠科研通 3697550
什么是DOI,文献DOI怎么找? 2038844
邀请新用户注册赠送积分活动 1071812
科研通“疑难数据库(出版商)”最低求助积分说明 955502