Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation

分割 索引(排版) 植被(病理学) 计算机科学 草坪 地理 人工智能 计算机视觉 遥感 万维网 医学 植物 病理 生物
作者
Tetsuya Aikoh,Ryota Homma,Yoshiki Abe
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:80: 127845-127845 被引量:21
标识
DOI:10.1016/j.ufug.2023.127845
摘要

Urban greenery has various beneficial effects, such as engendering peace of mind. The green view index (GVI) effectively measures the amount of greenery people can perceive and is a suitable indicator of urban greening. To date, the most common way to measure the GVI has been to photograph the street environment from eye level and use image-editing software to calculate the area occupied by vegetation. However, conventional methods are time-consuming and labor-intensive, and the calculation results may vary among individuals. In recent years, the use of Google Street View (GSV) photos and calculation of the GVI using automatic image segmentation have rapidly developed. In this study, we demonstrate the advantages of GSV and image segmentation over conventional methods, verify their accuracy, and identify the shortcomings of modern methods. We calculated the GVI in the central part of Sapporo, Japan, using the automatic image segmentation AI “DeepLab” and compared the results with those measured by Photoshop. At the exact GSV locations, we also acquired photos and again calculated the GVI using AI, subsequently comparing the results with those obtained on-site manually. Although the correlations were high, automatic image segmentation tended not to identify lawns and flowers planted in the ground as vegetation. It was impossible to determine the year when the GSV photos were taken. In addition, the distance to greenery was biased, depending on the position on the street. These points should be considered when using these modern methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
求助大神们完成签到 ,获得积分20
1秒前
谦让文昊完成签到,获得积分10
1秒前
1秒前
单薄茗完成签到,获得积分10
1秒前
文清发布了新的文献求助10
1秒前
kk发布了新的文献求助10
1秒前
无花果应助浮一白采纳,获得10
2秒前
易拉罐完成签到,获得积分10
3秒前
ddt发布了新的文献求助200
3秒前
秘密学习发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
研友_nv4M28发布了新的文献求助30
4秒前
4秒前
南方姑娘发布了新的文献求助10
5秒前
寒冷荧荧完成签到,获得积分10
5秒前
5秒前
舒心莫言完成签到,获得积分10
6秒前
张三完成签到,获得积分10
6秒前
搜集达人应助一杯橙采纳,获得10
6秒前
惟ai0713完成签到 ,获得积分20
6秒前
今天只做一件事完成签到,获得积分0
7秒前
不会科研的混子完成签到,获得积分10
7秒前
zhazd发布了新的文献求助10
7秒前
Jasper应助女神金采纳,获得10
8秒前
clock完成签到 ,获得积分10
8秒前
景熙完成签到,获得积分10
8秒前
9秒前
9秒前
叮当喵发布了新的文献求助10
9秒前
10秒前
10秒前
顾矜应助kk采纳,获得10
10秒前
sun关闭了sun文献求助
10秒前
青山落日秋月春风完成签到,获得积分10
11秒前
陶醉的天与完成签到 ,获得积分10
11秒前
文清完成签到,获得积分10
11秒前
没有你不行完成签到,获得积分10
12秒前
bluefire完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565