亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation

分割 索引(排版) 植被(病理学) 计算机科学 草坪 地理 人工智能 计算机视觉 遥感 万维网 植物 医学 生物 病理
作者
Tetsuya Aikoh,Riko Homma,Yoshiki Abe
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:80: 127845-127845 被引量:56
标识
DOI:10.1016/j.ufug.2023.127845
摘要

Urban greenery has various beneficial effects, such as engendering peace of mind. The green view index (GVI) effectively measures the amount of greenery people can perceive and is a suitable indicator of urban greening. To date, the most common way to measure the GVI has been to photograph the street environment from eye level and use image-editing software to calculate the area occupied by vegetation. However, conventional methods are time-consuming and labor-intensive, and the calculation results may vary among individuals. In recent years, the use of Google Street View (GSV) photos and calculation of the GVI using automatic image segmentation have rapidly developed. In this study, we demonstrate the advantages of GSV and image segmentation over conventional methods, verify their accuracy, and identify the shortcomings of modern methods. We calculated the GVI in the central part of Sapporo, Japan, using the automatic image segmentation AI “DeepLab” and compared the results with those measured by Photoshop. At the exact GSV locations, we also acquired photos and again calculated the GVI using AI, subsequently comparing the results with those obtained on-site manually. Although the correlations were high, automatic image segmentation tended not to identify lawns and flowers planted in the ground as vegetation. It was impossible to determine the year when the GSV photos were taken. In addition, the distance to greenery was biased, depending on the position on the street. These points should be considered when using these modern methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭楠楠发布了新的文献求助30
3秒前
5秒前
Xyyy完成签到,获得积分10
7秒前
RED发布了新的文献求助10
10秒前
满天星发布了新的文献求助10
29秒前
44秒前
郭楠楠发布了新的文献求助10
1分钟前
缨绒完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
满天星完成签到 ,获得积分10
2分钟前
zqr发布了新的文献求助10
2分钟前
Hello应助Raunio采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
abdo完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
小蘑菇应助成太采纳,获得10
2分钟前
万能图书馆应助zxl采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
郭楠楠发布了新的文献求助10
2分钟前
2分钟前
清泉发布了新的文献求助10
2分钟前
2分钟前
成太发布了新的文献求助10
2分钟前
zxl发布了新的文献求助10
2分钟前
CodeCraft应助郭楠楠采纳,获得10
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
付辛博boo完成签到,获得积分10
3分钟前
付辛博boo发布了新的文献求助30
3分钟前
李健应助SiboN采纳,获得10
3分钟前
万能图书馆应助Goal采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
研友_VZG7GZ应助付辛博boo采纳,获得10
4分钟前
飞天大南瓜完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359