Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation

分割 索引(排版) 植被(病理学) 计算机科学 草坪 地理 人工智能 计算机视觉 遥感 万维网 植物 医学 生物 病理
作者
Tetsuya Aikoh,Ryota Homma,Yoshiki Abe
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:80: 127845-127845 被引量:21
标识
DOI:10.1016/j.ufug.2023.127845
摘要

Urban greenery has various beneficial effects, such as engendering peace of mind. The green view index (GVI) effectively measures the amount of greenery people can perceive and is a suitable indicator of urban greening. To date, the most common way to measure the GVI has been to photograph the street environment from eye level and use image-editing software to calculate the area occupied by vegetation. However, conventional methods are time-consuming and labor-intensive, and the calculation results may vary among individuals. In recent years, the use of Google Street View (GSV) photos and calculation of the GVI using automatic image segmentation have rapidly developed. In this study, we demonstrate the advantages of GSV and image segmentation over conventional methods, verify their accuracy, and identify the shortcomings of modern methods. We calculated the GVI in the central part of Sapporo, Japan, using the automatic image segmentation AI “DeepLab” and compared the results with those measured by Photoshop. At the exact GSV locations, we also acquired photos and again calculated the GVI using AI, subsequently comparing the results with those obtained on-site manually. Although the correlations were high, automatic image segmentation tended not to identify lawns and flowers planted in the ground as vegetation. It was impossible to determine the year when the GSV photos were taken. In addition, the distance to greenery was biased, depending on the position on the street. These points should be considered when using these modern methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诗梦完成签到,获得积分10
刚刚
称心的紫萱完成签到,获得积分10
1秒前
1秒前
javalin发布了新的文献求助10
1秒前
2秒前
科研通AI5应助Xiaolei采纳,获得30
2秒前
2秒前
inRe完成签到,获得积分10
2秒前
2秒前
2秒前
叫滚滚完成签到,获得积分10
3秒前
内向秋寒发布了新的文献求助10
3秒前
4秒前
zhui发布了新的文献求助10
4秒前
xia完成签到,获得积分10
4秒前
拈花完成签到,获得积分10
4秒前
4秒前
深情安青应助欧阳小枫采纳,获得10
4秒前
刘芸芸发布了新的文献求助10
5秒前
AOI0504完成签到,获得积分10
5秒前
墨染完成签到,获得积分10
5秒前
薛厌完成签到,获得积分10
6秒前
小橙子发布了新的文献求助10
7秒前
javalin完成签到,获得积分10
7秒前
LiShin发布了新的文献求助10
7秒前
7秒前
7秒前
叫滚滚发布了新的文献求助10
8秒前
坚强的樱发布了新的文献求助10
8秒前
桐桐应助zmmmm采纳,获得10
8秒前
10秒前
小敦发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
翔哥发布了新的文献求助10
11秒前
阿航完成签到,获得积分10
11秒前
情怀应助Mrrr采纳,获得10
12秒前
12秒前
调研昵称发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794