亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation

分割 索引(排版) 植被(病理学) 计算机科学 草坪 地理 人工智能 计算机视觉 遥感 万维网 植物 医学 生物 病理
作者
Tetsuya Aikoh,Ryota Homma,Yoshiki Abe
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:80: 127845-127845 被引量:21
标识
DOI:10.1016/j.ufug.2023.127845
摘要

Urban greenery has various beneficial effects, such as engendering peace of mind. The green view index (GVI) effectively measures the amount of greenery people can perceive and is a suitable indicator of urban greening. To date, the most common way to measure the GVI has been to photograph the street environment from eye level and use image-editing software to calculate the area occupied by vegetation. However, conventional methods are time-consuming and labor-intensive, and the calculation results may vary among individuals. In recent years, the use of Google Street View (GSV) photos and calculation of the GVI using automatic image segmentation have rapidly developed. In this study, we demonstrate the advantages of GSV and image segmentation over conventional methods, verify their accuracy, and identify the shortcomings of modern methods. We calculated the GVI in the central part of Sapporo, Japan, using the automatic image segmentation AI “DeepLab” and compared the results with those measured by Photoshop. At the exact GSV locations, we also acquired photos and again calculated the GVI using AI, subsequently comparing the results with those obtained on-site manually. Although the correlations were high, automatic image segmentation tended not to identify lawns and flowers planted in the ground as vegetation. It was impossible to determine the year when the GSV photos were taken. In addition, the distance to greenery was biased, depending on the position on the street. These points should be considered when using these modern methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的云朵完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
43秒前
CodeCraft应助科研通管家采纳,获得10
52秒前
Akim应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
领导范儿应助可爱花瓣采纳,获得10
1分钟前
1分钟前
可爱花瓣发布了新的文献求助10
1分钟前
孤独剑完成签到 ,获得积分10
1分钟前
我是老大应助vamcello采纳,获得10
1分钟前
2分钟前
vamcello发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
汉堡包应助小飞采纳,获得10
3分钟前
3分钟前
小飞发布了新的文献求助10
3分钟前
路漫漫其修远兮完成签到 ,获得积分10
4分钟前
Willow完成签到,获得积分10
4分钟前
4分钟前
中级奥术师完成签到,获得积分10
4分钟前
4分钟前
浪漫反派完成签到 ,获得积分20
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
CHEN完成签到 ,获得积分10
4分钟前
5分钟前
zozox完成签到 ,获得积分10
6分钟前
迷路寄容完成签到,获得积分10
6分钟前
6分钟前
贪玩的万仇完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
Jasper应助丽优采纳,获得10
6分钟前
j7完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426576
求助须知:如何正确求助?哪些是违规求助? 4540269
关于积分的说明 14171896
捐赠科研通 4458045
什么是DOI,文献DOI怎么找? 2444792
邀请新用户注册赠送积分活动 1435864
关于科研通互助平台的介绍 1413309