Comparing conventional manual measurement of the green view index with modern automatic methods using google street view and semantic segmentation

分割 索引(排版) 植被(病理学) 计算机科学 草坪 地理 人工智能 计算机视觉 遥感 万维网 植物 医学 生物 病理
作者
Tetsuya Aikoh,Ryota Homma,Yoshiki Abe
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:80: 127845-127845 被引量:21
标识
DOI:10.1016/j.ufug.2023.127845
摘要

Urban greenery has various beneficial effects, such as engendering peace of mind. The green view index (GVI) effectively measures the amount of greenery people can perceive and is a suitable indicator of urban greening. To date, the most common way to measure the GVI has been to photograph the street environment from eye level and use image-editing software to calculate the area occupied by vegetation. However, conventional methods are time-consuming and labor-intensive, and the calculation results may vary among individuals. In recent years, the use of Google Street View (GSV) photos and calculation of the GVI using automatic image segmentation have rapidly developed. In this study, we demonstrate the advantages of GSV and image segmentation over conventional methods, verify their accuracy, and identify the shortcomings of modern methods. We calculated the GVI in the central part of Sapporo, Japan, using the automatic image segmentation AI “DeepLab” and compared the results with those measured by Photoshop. At the exact GSV locations, we also acquired photos and again calculated the GVI using AI, subsequently comparing the results with those obtained on-site manually. Although the correlations were high, automatic image segmentation tended not to identify lawns and flowers planted in the ground as vegetation. It was impossible to determine the year when the GSV photos were taken. In addition, the distance to greenery was biased, depending on the position on the street. These points should be considered when using these modern methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qingmoheng应助anle采纳,获得10
刚刚
科研通AI6应助anle采纳,获得10
刚刚
快乐的妙菱完成签到,获得积分10
刚刚
chen完成签到,获得积分10
刚刚
ws完成签到,获得积分20
刚刚
Werner完成签到 ,获得积分10
1秒前
科研通AI2S应助深情代芙采纳,获得10
1秒前
Orange应助刘博士采纳,获得10
1秒前
1秒前
1秒前
2秒前
我是弱智先帮我完成签到,获得积分10
2秒前
汤传麒发布了新的文献求助10
2秒前
快乐的萝莉完成签到,获得积分10
2秒前
zzz发布了新的文献求助10
2秒前
路途遥远完成签到,获得积分10
3秒前
3秒前
鱼憨儿完成签到,获得积分10
3秒前
3秒前
小唐完成签到,获得积分10
3秒前
bkagyin应助lezard采纳,获得10
4秒前
ZhaoRongzhe发布了新的文献求助10
4秒前
香蕉觅云应助科研废人采纳,获得10
4秒前
无私的迎松完成签到 ,获得积分10
4秒前
伶俐剑心完成签到,获得积分10
4秒前
4秒前
这大概是发布了新的文献求助10
4秒前
4秒前
小药丸包饺子应助ccy采纳,获得20
4秒前
一一完成签到,获得积分10
4秒前
小二郎应助zhang-leo采纳,获得10
4秒前
lin关注了科研通微信公众号
5秒前
5秒前
tyy完成签到,获得积分10
5秒前
5秒前
5秒前
呆萌的源智完成签到,获得积分10
6秒前
阔达如柏完成签到,获得积分10
6秒前
于东完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024