Semantic-based conditional generative adversarial hashing with pairwise labels

计算机科学 散列函数 人工智能 成对比较 模式识别(心理学) 机器学习 二进制代码 数据挖掘 二进制数 数学 算术 计算机安全
作者
Qi Li,Weining Wang,Yuanyan Tang,Cheng‐Zhong Xu,Zhenan Sun
出处
期刊:Pattern Recognition [Elsevier]
卷期号:139: 109452-109452
标识
DOI:10.1016/j.patcog.2023.109452
摘要

Hashing has been widely exploited in recent years due to the rapid growth of image and video data on the web. Benefiting from recent advances in deep learning, deep hashing methods have achieved promising results with supervised information. However, it is usually expensive to collect the supervised information. In order to utilize both labeled and unlabeled data samples, many semi-supervised hashing methods based on Generative Adversarial Networks (GANs) have been proposed. Most of them still need the conditional information, which is usually generated by the pre-trained neural networks or leveraging random binary vectors. One natural question about these methods is that how can we generate a better conditional information given the semantic similarity information? In this paper, we propose a general two-stage conditional GANs hashing framework based on the pairwise label information. Both the labeled and unlabeled data samples are exploited to learn hash codes under our framework. In the first stage, the conditional information is generated via a general Bayesian approach, which has a much lower dimensional representation and maintains the semantic information of original data samples. In the second stage, a semi-supervised approach is presented to learn hash codes based on the conditional information. Both pairwise based cross entropy loss and adversarial loss are introduced to make full use of labeled and unlabeled data samples. Extensive experiments have shown that the propose algorithm outperforms current state-of-the-art methods on three benchmark image datasets, which demonstrates the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
愉快秀发布了新的文献求助10
1秒前
朴实的小萱完成签到 ,获得积分10
1秒前
涵忆发布了新的文献求助10
1秒前
wanci应助凯凯采纳,获得10
2秒前
小二郎应助凯凯采纳,获得10
2秒前
2秒前
Ava应助凯凯采纳,获得10
2秒前
天天快乐应助凯凯采纳,获得10
2秒前
深情安青应助凯凯采纳,获得10
2秒前
慕青应助凯凯采纳,获得10
2秒前
所所应助鹿人采纳,获得10
2秒前
李爱国应助凯凯采纳,获得10
2秒前
熬夜波比应助凯凯采纳,获得10
2秒前
Ava应助凯凯采纳,获得10
3秒前
大个应助凯凯采纳,获得10
3秒前
yyq发布了新的文献求助10
3秒前
3秒前
3秒前
快乐小猴完成签到,获得积分20
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
无奈可仁完成签到,获得积分10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助娇娇采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
进击的PhD应助科研通管家采纳,获得20
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得30
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616