Data‐Driven Approach for Rational Synthesis of Zeolites and Other Nanoporous Materials

计算机科学 纳米孔 机器学习 人工智能 直觉 生化工程 纳米技术 材料科学 工程类 哲学 认识论
作者
Watcharop Chaikittisilp
标识
DOI:10.1002/9781119819783.ch9
摘要

Chapter 9 Data-Driven Approach for Rational Synthesis of Zeolites and Other Nanoporous Materials Watcharop Chaikittisilp, Watcharop ChaikittisilpSearch for more papers by this author Watcharop Chaikittisilp, Watcharop ChaikittisilpSearch for more papers by this author Book Editor(s):German Sastre, German SastreSearch for more papers by this authorFrits Daeyaert, Frits DaeyaertSearch for more papers by this author First published: 24 January 2023 https://doi.org/10.1002/9781119819783.ch9 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Synthesis of zeolites generally involves complicated, interrelated, synthetic parameters. Their formation mechanisms have not yet been fully clarified, because zeolites are formed through an intricate sequence of chemical reactions under hydrothermal conditions. As a result, the discovery of new zeolites and their property optimization for targeted applications have heavily relied on a trial-and-error approach based on chemical intuition from experts, generally by alteration of synthetic parameters. Such an exploratory search for the optimal synthetic parameters is prohibitively experimentally expensive. A key strategy to overcome this experimental challenge is to combine experiments with data science, especially with the machine learning algorithm approach. This approach applied to the experimental data enables us to extract the most significant synthesis descriptors over complex chemical spaces with high dimension and massive entries, which is sometimes difficult for humans to handle. In particular, the pattern recognition capability of machine learning can be exceptionally effective for materials that are synthesized through kinetically controlled pathways, such as zeolites, which are difficult to treat by straightforward computational methodologies. This chapter describes the application of machine learning techniques to analyze the synthetic records of zeolites previously reported in the literature, to extract the synthesis descriptors of zeolites. These synthesis descriptors are linked to the structure descriptors of zeolites, to rationalize the synthesis-structure relationship, and subsequently to suggest the synthesis parameters for selected zeolites. The machine learning algorithms can also be used to extract the influence of materials descriptors (i.e., physicochemical properties) on performance (e.g., adsorption capacity and catalytic activity). An example on nanoporous catalysts is explained. Lastly, an active learning scheme, based on Bayesian optimization, is described for optimization of synthetic parameters of materials. References Davis , M.E. ( 2002 ). Ordered porous materials for emerging applications . Nature 417 : 813 – 821 . 10.1038/nature00785 CASPubMedWeb of Science®Google Scholar Chaikittisilp , W. and Okubo , T. ( 2017 ). Zeolite and zeolite-like materials . In: Handbook of Solid State Chemistry , 4e (ed. R. Dronskowski , S. Kikkawa , and A. Stein ), 97 – 119 . Weinheim : Wiley-VCH . 10.1002/9783527691036.hsscvol4013 Google Scholar Horike , S. , Shimomura , S. , and Kitagawa , S. ( 2009 ). Soft porous crystals . Nat. Chem. 1 : 695 – 704 . 10.1038/nchem.444 CASPubMedWeb of Science®Google Scholar Ariga , K. , Vinu , A. , Yamauchi , Y. et al. ( 2012 ). Nanoarchitectonics for mesoporous materials . Bull. Chem. Soc. Jpn. 85 : 1 – 32 . 10.1246/bcsj.20110162 CASWeb of Science®Google Scholar Slater , A.G. and Cooper , A.I. ( 2015 ). Function-led design of new porous materials . Science 348 : aaa8075 . 10.1126/science.aaa8075 CASPubMedWeb of Science®Google Scholar Moliner , A. , Román-Leshkov , Y. , and Corma , A. ( 2019 ). Machine learning applied to zeolite synthesis: the missing link for realizing high-throughput discovery . Acc. Chem. Res. 52 : 2971 – 2980 . 10.1021/acs.accounts.9b00399 CASPubMedWeb of Science®Google Scholar Jablonka , K.M. , Ongari , D. , Moosavi , S.M . et al. ( 2020 ). Big-data science in porous materials: materials genomics and machine learning . Chem. Rev. 120 : 8066 – 8129 . 10.1021/acs.chemrev.0c00004 CASPubMedWeb of Science®Google Scholar Clayson , I.G. , Hewitt , D. , Hutereau , M. et al. ( 2020 ). High throughput methods in the synthesis, characterization, and optimization of porous materials . Adv. Mater. 32 : 2002780 . 10.1002/adma.202002780 CASPubMedWeb of Science®Google Scholar Davis , M.E. and Lobo , R.F. ( 1992 ). Zeolite and molecular sieve synthesis . Chem. Mater. 4 : 756 – 768 . 10.1021/cm00022a005 CASWeb of Science®Google Scholar Cundy , C.S. and Cox , P.A. ( 2003 ). The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time . Chem. Rev. 103 : 663 – 702 . 10.1021/cr020060i CASPubMedWeb of Science®Google Scholar Bellussi , G. , Carati , A. , Rizzo , C. et al. ( 2013 ). New trends in the synthesis of crystalline microporous materials . Catal. Sci. Technol. 3 : 833 – 857 . 10.1039/C2CY20510F CASWeb of Science®Google Scholar Cundy , C.S. and Cox , P.A. ( 2005 ). The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism . Micropor. Mesopor. Mater. 82 : 1 – 78 . 10.1016/j.micromeso.2005.02.016 CASWeb of Science®Google Scholar Grand , J. , Awala , H. , and Mintova , S. ( 2016 ). Mechanism of zeolites crystal growth: new findings and open questions . CrystEngComm. 18 : 650 – 664 . 10.1039/C5CE02286J CASWeb of Science®Google Scholar De Yoreo , J.J. , Gilbert , P.U.P.A. , Sommerdijk , N.A.J.M. et al. ( 2015 ). Crystallization by particle attachment in synthetic, biogenic, and geologic environments . Science 349 : aaa6760 . 10.1126/science.aaa6760 PubMedWeb of Science®Google Scholar Catlow , R. , Bell , R. , Cora , F. et al. ( 2005 ). Computer modelling of inorganic materials . Annu. Rep. Prog. Chem., Sect. A 101 : 513 – 547 . CASGoogle Scholar Li , Y. and Yu , J. ( 2014 ). New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations . Chem. Rev. 114 : 7268 – 7316 . 10.1021/cr500010r CASPubMedWeb of Science®Google Scholar Van Speybroeck , V. , Hemelsoet , K. , Joos , L. et al. ( 2015 ). Advances in theory and their application within the field of zeolite chemistry . Chem. Soc. Rev. 44 : 7044 – 7111 . 10.1039/C5CS00029G CASPubMedWeb of Science®Google Scholar Jensen , Z. , Kim , E. , Kwon , S. et al. ( 2019 ). Approach to zeolite synthesis enabled by automatic literature data extraction . ACS Cent. Sci. 5 : 892 – 899 . 10.1021/acscentsci.9b00193 CASPubMedWeb of Science®Google Scholar Jensen , Z. , Kwon , S. , Schwalbe-Koda , D. et al. ( 2021 ). Discovering relationships between OSDAs and zeolites through data mining and generative neural networks . ACS Cent. Sci. 7 : 858 – 867 . 10.1021/acscentsci.1c00024 CASPubMedWeb of Science®Google Scholar Muraoka , K. , Sada , Y. , Miyazaki , D. et al. ( 2019 ). Linking synthesis and structure descriptors from a large collection of synthetic records of zeolite materials . Nat. Commun. 10 : 4459 . 10.1038/s41467-019-12394-0 PubMedWeb of Science®Google Scholar Raccuglia , P. , Elbert , K.C. , Adler , P.D.F. et al. ( 2016 ). Machine-learning-assisted materials discovery using failed experiments . Nature 533 : 73 – 76 . 10.1038/nature17439 CASPubMedWeb of Science®Google Scholar Moosavi , S.M. , Chidambaram , A. , Talirz , L. et al. ( 2019 ). Capturing chemical intuition in synthesis of metal–organic frameworks . Nat. Commun. 10 : 539 . 10.1038/s41467-019-08483-9 CASPubMedWeb of Science®Google Scholar Xie , Y. , Zhang , C. , Hu , X. et al. ( 2020 ). Machine learning assisted synthesis of metal–organic nanocapsules . J. Am. Chem. Soc. 142 : 1475 – 1481 . 10.1021/jacs.9b11569 CASPubMedWeb of Science®Google Scholar Loewenstein , W. ( 1954 ). The distribution of aluminum in the tetrahedra of silicates and aluminates . Am. Miner. 39 : 92 – 96 . CASWeb of Science®Google Scholar Fletcher , R.E. , Ling , S. , and Slater , B. ( 2017 ). Violations of Löwenstein's rule in zeolites . Chem. Sci. 8 : 7483 – 7491 . 10.1039/C7SC02531A CASPubMedWeb of Science®Google Scholar Van Santen , R.A. ( 1984 ). The Ostwald step rule . J. Phys. Chem. 88 : 5768 – 5769 . 10.1021/j150668a002 CASWeb of Science®Google Scholar Navrotsky , A. , Trofymluk , O. , and Levchenko , A.A. ( 2009 ). Thermochemistry of microporous and mesoporous materials . Chem. Rev. 109 : 3885 – 3902 . 10.1021/cr800495t CASPubMedWeb of Science®Google Scholar Itabashi , K. , Kamimura , Y. , Iyoki , K. et al. ( 2012 ). Hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent . J. Am. Chem. Soc. 134 : 11542 – 11549 . 10.1021/ja3022335 CASPubMedWeb of Science®Google Scholar Guo , P. , Shin , J. , Greenaway , A.G. et al. ( 2015 ). A zeolite family with expanding structural complexity and embedded isoreticular structures . Nature 524 : 74 – 78 . 10.1038/nature14575 CASPubMedWeb of Science®Google Scholar Chaikittisilp , W. and Okubo , T. ( 2021 ). No more trial and error for zeolites . Science 374 : 257 – 258 . 10.1126/science.abm0089 CASPubMedWeb of Science®Google Scholar Blondel , V.D. , Guillaume , J.-L. , Lambiotte , R. et al. ( 2008 ). Fast unfolding of communities in large networks . J. Stat. Mech. Theory Exp. 2008 : P10008 . 10.1088/1742-5468/2008/10/P10008 Web of Science®Google Scholar Schieber , T.A. , Carpi , L. , Diaz-Guilera , A. et al. ( 2016 ). Quantification of network structural dissimilarities . Nat. Commun. 8 : 13928 . 10.1038/ncomms13928 Web of Science®Google Scholar Xu , L. , Choudhary , M.K. , Muraoka , K. et al. ( 2019 ). Bridging the gap between structurally distinct 2D lamellar zeolitic precursors through a 3D germanosilicate intermediate . Angew. Chem. Int. Ed. 58 : 14529 – 14533 . 10.1002/anie.201907857 CASPubMedWeb of Science®Google Scholar Schwalbe-Koda , D. , Jensen , Z. et al. ( 2019 ). Graph similarity drives zeolite diffusionless transformations and intergrowth . Nat. Mater. 18 : 1177 – 1181 . 10.1038/s41563-019-0486-1 CASPubMedWeb of Science®Google Scholar Jakobsen , J.C. , Gluud , C. , Wetterslev , J. et al. ( 2017 ). When and how should multiple imputation be used for handling missing data in randomised clinical trials: a practical guide with flowcharts . BMC Med. Res. Methodol. 17 : 162 . 10.1186/s12874-017-0442-1 PubMedWeb of Science®Google Scholar Schmitt , P. , Mandel , J. , and Guedj , M. ( 2015 ). A comparison of six methods for missing data imputation . J. Biomet. Biostat. 6 : 1000224 . Google Scholar Stekhoven , D.J. and Bühlmann , P. ( 2012 ). MissForest: non-parametric missing value imputation for mixed-type data . Bioinformatics 28 : 112 – 118 . 10.1093/bioinformatics/btr597 CASPubMedWeb of Science®Google Scholar Zhang , X. , Yan , C. , Gao , C. et al. ( 2020 ). Predicting missing values in medical data via XGBoost regression . J. Healthc. Inform. Res. 4 : 383 – 394 . 10.1007/s41666-020-00077-1 PubMedGoogle Scholar Xia , W. , Hou , Z. , Tang , J. et al. ( 2022 ). Materials informatics-guided superior electrocatalyst: a case of pyrolysis-free single-atom coordinated with N-graphene nanomesh . Nano Energy 94 : 106868 . 10.1016/j.nanoen.2021.106868 CASWeb of Science®Google Scholar Dai , L. , Xue , Y. , Qu , L. et al. ( 2015 ). Metal-free catalysts for oxygen reduction reaction . Chem. Rev. 115 : 4823 – 4892 . 10.1021/cr5003563 CASPubMedWeb of Science®Google Scholar Gewirth , A.A. , Varnell , J.A. , and Diascro , A.M. ( 2018 ). Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems . Chem. Rev. 118 : 2313 – 2339 . 10.1021/acs.chemrev.7b00335 CASPubMedWeb of Science®Google Scholar Xia , W. , Tang , J. , Li , J. et al. ( 2019 ). Defect-rich graphene nanomesh produced by thermal exfoliation of metal–organic frameworks for the oxygen reduction reaction . Angew. Chem. Int. Ed. 58 : 13354 – 13359 . 10.1002/anie.201906870 CASPubMedWeb of Science®Google Scholar Heltona , J.C. and Davis , F.J. ( 2003 ). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems . Reliab. Eng. Syst. Saf. 81 : 23 – 69 . 10.1016/S0951-8320(03)00058-9 Web of Science®Google Scholar Pruksawan , S. , Lambard , G. , Samitsu , S. et al. ( 2019 ). Prediction and optimization of epoxy adhesive strength from a small dataset through active learning . Sci. Technol. Adv. Mater. 20 : 1010 – 1021 . 10.1080/14686996.2019.1673670 CASPubMedWeb of Science®Google Scholar Harada , M. , Takeda , H. , Suzuki , S. et al. ( 2020 ). Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries . J. Mater. Chem. A 8 : 15103 – 15109 . 10.1039/D0TA04441E CASWeb of Science®Google Scholar Lambard , G. , Sasaki , T.T. , Sodeyama , K. et al. ( 2022 ). Optimization of direct extrusion process for Nd-Fe-B magnets using active learning assisted by machine learning and Bayesian optimization . Scr. Mater. 209 : 114341 . 10.1016/j.scriptamat.2021.114341 CASWeb of Science®Google Scholar Nugraha , A.S. , Lambard , G. , Na , J. et al. ( 2020 ). Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: unexpected chemical compositions discovered by Bayesian optimization . J. Mater. Chem. A 8 : 13532 – 13540 . 10.1039/D0TA04096G CASWeb of Science®Google Scholar Zhang , J. and Li , C.M. ( 2012 ). Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems . Chem. Soc. Rev. 41 : 7016 – 7031 . 10.1039/c2cs35210a CASPubMedWeb of Science®Google Scholar Lim , H. , Kani , K. , Henzie , J. et al. ( 2020 ). A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis . Nat. Protoc. 15 : 2980 – 3008 . 10.1038/s41596-020-0359-8 PubMedWeb of Science®Google Scholar Wang , T. , Chutia , A. , Brett , D.J.L. et al. ( 2021 ). Palladium alloys used as electrocatalysts for the oxygen reduction reaction . Energy Environ. Sci. 14 : 2639 – 2669 . 10.1039/D0EE03915B CASWeb of Science®Google Scholar Liu , Y. , Chi , M. , Mazumder , V. et al. ( 2011 ). Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of Methanol . Chem. Mater. 23 : 4199 – 4203 . 10.1021/cm2014785 CASWeb of Science®Google Scholar Zhang , Z. , Wang , Y. , and Wang , X. ( 2011 ). Nanoporous bimetallic Pt–Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid . Nanoscale 3 : 1663 – 1674 . 10.1039/c0nr00830c CASPubMedWeb of Science®Google Scholar Xu , S. , Hou , W. , Jiang , R. et al. ( 2019 ). Regulating locations of active sites: a novel strategy to greatly improve the stability of PtAu electrocatalysts . Chem. Commun. 55 : 13602 – 13605 . 10.1039/C9CC07275F CASPubMedWeb of Science®Google Scholar Packwood , D. ( 2017 ). Bayesian Optimization for Materials Science . Singapore : Springer . 10.1007/978-981-10-6781-5 Google Scholar Zhang , Y. , Gu , Y. , Lin , S. et al. ( 2011 ). One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity . Electrochim. Acta 56 : 8746 – 8751 . 10.1016/j.electacta.2011.07.094 CASWeb of Science®Google Scholar Chen , D. , Luo , L.-M. , Zhang , R.-H. et al. ( 2018 ). Highly monodispersed ternary hollow PtPdAu alloy nanocatalysts with enhanced activity toward methanol oxidation . J. Electroanal. Chem. 812 : 90 – 95 . 10.1016/j.jelechem.2018.01.051 CASWeb of Science®Google Scholar AI‐Guided Design and Property Prediction for Zeolites and Nanoporous Materials ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助hjb采纳,获得10
刚刚
林夕君发布了新的文献求助10
2秒前
JIaaaa完成签到,获得积分20
2秒前
BocchiWu完成签到,获得积分10
2秒前
拜拜发布了新的文献求助10
3秒前
怦然心动完成签到,获得积分10
3秒前
阿甲发布了新的文献求助10
6秒前
7秒前
生椰拿铁完成签到 ,获得积分10
8秒前
listen发布了新的文献求助10
8秒前
奥特超曼应助xiaosongmufaeins采纳,获得10
8秒前
李爱国应助梅雨季来信采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
科研助手6应助科研通管家采纳,获得10
10秒前
DD应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
10秒前
科研助手6应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
传奇3应助iKYy采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得20
10秒前
Ava应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得30
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
孙福禄应助科研通管家采纳,获得10
11秒前
11秒前
DD应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014