Data‐Driven Approach for Rational Synthesis of Zeolites and Other Nanoporous Materials

计算机科学 纳米孔 机器学习 人工智能 直觉 生化工程 纳米技术 材料科学 工程类 认识论 哲学
作者
Watcharop Chaikittisilp
标识
DOI:10.1002/9781119819783.ch9
摘要

Chapter 9 Data-Driven Approach for Rational Synthesis of Zeolites and Other Nanoporous Materials Watcharop Chaikittisilp, Watcharop ChaikittisilpSearch for more papers by this author Watcharop Chaikittisilp, Watcharop ChaikittisilpSearch for more papers by this author Book Editor(s):German Sastre, German SastreSearch for more papers by this authorFrits Daeyaert, Frits DaeyaertSearch for more papers by this author First published: 24 January 2023 https://doi.org/10.1002/9781119819783.ch9 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Synthesis of zeolites generally involves complicated, interrelated, synthetic parameters. Their formation mechanisms have not yet been fully clarified, because zeolites are formed through an intricate sequence of chemical reactions under hydrothermal conditions. As a result, the discovery of new zeolites and their property optimization for targeted applications have heavily relied on a trial-and-error approach based on chemical intuition from experts, generally by alteration of synthetic parameters. Such an exploratory search for the optimal synthetic parameters is prohibitively experimentally expensive. A key strategy to overcome this experimental challenge is to combine experiments with data science, especially with the machine learning algorithm approach. This approach applied to the experimental data enables us to extract the most significant synthesis descriptors over complex chemical spaces with high dimension and massive entries, which is sometimes difficult for humans to handle. In particular, the pattern recognition capability of machine learning can be exceptionally effective for materials that are synthesized through kinetically controlled pathways, such as zeolites, which are difficult to treat by straightforward computational methodologies. This chapter describes the application of machine learning techniques to analyze the synthetic records of zeolites previously reported in the literature, to extract the synthesis descriptors of zeolites. These synthesis descriptors are linked to the structure descriptors of zeolites, to rationalize the synthesis-structure relationship, and subsequently to suggest the synthesis parameters for selected zeolites. The machine learning algorithms can also be used to extract the influence of materials descriptors (i.e., physicochemical properties) on performance (e.g., adsorption capacity and catalytic activity). An example on nanoporous catalysts is explained. Lastly, an active learning scheme, based on Bayesian optimization, is described for optimization of synthetic parameters of materials. References Davis , M.E. ( 2002 ). Ordered porous materials for emerging applications . Nature 417 : 813 – 821 . 10.1038/nature00785 CASPubMedWeb of Science®Google Scholar Chaikittisilp , W. and Okubo , T. ( 2017 ). Zeolite and zeolite-like materials . In: Handbook of Solid State Chemistry , 4e (ed. R. Dronskowski , S. Kikkawa , and A. Stein ), 97 – 119 . Weinheim : Wiley-VCH . 10.1002/9783527691036.hsscvol4013 Google Scholar Horike , S. , Shimomura , S. , and Kitagawa , S. ( 2009 ). Soft porous crystals . Nat. Chem. 1 : 695 – 704 . 10.1038/nchem.444 CASPubMedWeb of Science®Google Scholar Ariga , K. , Vinu , A. , Yamauchi , Y. et al. ( 2012 ). Nanoarchitectonics for mesoporous materials . Bull. Chem. Soc. Jpn. 85 : 1 – 32 . 10.1246/bcsj.20110162 CASWeb of Science®Google Scholar Slater , A.G. and Cooper , A.I. ( 2015 ). Function-led design of new porous materials . Science 348 : aaa8075 . 10.1126/science.aaa8075 CASPubMedWeb of Science®Google Scholar Moliner , A. , Román-Leshkov , Y. , and Corma , A. ( 2019 ). Machine learning applied to zeolite synthesis: the missing link for realizing high-throughput discovery . Acc. Chem. Res. 52 : 2971 – 2980 . 10.1021/acs.accounts.9b00399 CASPubMedWeb of Science®Google Scholar Jablonka , K.M. , Ongari , D. , Moosavi , S.M . et al. ( 2020 ). Big-data science in porous materials: materials genomics and machine learning . Chem. Rev. 120 : 8066 – 8129 . 10.1021/acs.chemrev.0c00004 CASPubMedWeb of Science®Google Scholar Clayson , I.G. , Hewitt , D. , Hutereau , M. et al. ( 2020 ). High throughput methods in the synthesis, characterization, and optimization of porous materials . Adv. Mater. 32 : 2002780 . 10.1002/adma.202002780 CASPubMedWeb of Science®Google Scholar Davis , M.E. and Lobo , R.F. ( 1992 ). Zeolite and molecular sieve synthesis . Chem. Mater. 4 : 756 – 768 . 10.1021/cm00022a005 CASWeb of Science®Google Scholar Cundy , C.S. and Cox , P.A. ( 2003 ). The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time . Chem. Rev. 103 : 663 – 702 . 10.1021/cr020060i CASPubMedWeb of Science®Google Scholar Bellussi , G. , Carati , A. , Rizzo , C. et al. ( 2013 ). New trends in the synthesis of crystalline microporous materials . Catal. Sci. Technol. 3 : 833 – 857 . 10.1039/C2CY20510F CASWeb of Science®Google Scholar Cundy , C.S. and Cox , P.A. ( 2005 ). The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism . Micropor. Mesopor. Mater. 82 : 1 – 78 . 10.1016/j.micromeso.2005.02.016 CASWeb of Science®Google Scholar Grand , J. , Awala , H. , and Mintova , S. ( 2016 ). Mechanism of zeolites crystal growth: new findings and open questions . CrystEngComm. 18 : 650 – 664 . 10.1039/C5CE02286J CASWeb of Science®Google Scholar De Yoreo , J.J. , Gilbert , P.U.P.A. , Sommerdijk , N.A.J.M. et al. ( 2015 ). Crystallization by particle attachment in synthetic, biogenic, and geologic environments . Science 349 : aaa6760 . 10.1126/science.aaa6760 PubMedWeb of Science®Google Scholar Catlow , R. , Bell , R. , Cora , F. et al. ( 2005 ). Computer modelling of inorganic materials . Annu. Rep. Prog. Chem., Sect. A 101 : 513 – 547 . CASGoogle Scholar Li , Y. and Yu , J. ( 2014 ). New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations . Chem. Rev. 114 : 7268 – 7316 . 10.1021/cr500010r CASPubMedWeb of Science®Google Scholar Van Speybroeck , V. , Hemelsoet , K. , Joos , L. et al. ( 2015 ). Advances in theory and their application within the field of zeolite chemistry . Chem. Soc. Rev. 44 : 7044 – 7111 . 10.1039/C5CS00029G CASPubMedWeb of Science®Google Scholar Jensen , Z. , Kim , E. , Kwon , S. et al. ( 2019 ). Approach to zeolite synthesis enabled by automatic literature data extraction . ACS Cent. Sci. 5 : 892 – 899 . 10.1021/acscentsci.9b00193 CASPubMedWeb of Science®Google Scholar Jensen , Z. , Kwon , S. , Schwalbe-Koda , D. et al. ( 2021 ). Discovering relationships between OSDAs and zeolites through data mining and generative neural networks . ACS Cent. Sci. 7 : 858 – 867 . 10.1021/acscentsci.1c00024 CASPubMedWeb of Science®Google Scholar Muraoka , K. , Sada , Y. , Miyazaki , D. et al. ( 2019 ). Linking synthesis and structure descriptors from a large collection of synthetic records of zeolite materials . Nat. Commun. 10 : 4459 . 10.1038/s41467-019-12394-0 PubMedWeb of Science®Google Scholar Raccuglia , P. , Elbert , K.C. , Adler , P.D.F. et al. ( 2016 ). Machine-learning-assisted materials discovery using failed experiments . Nature 533 : 73 – 76 . 10.1038/nature17439 CASPubMedWeb of Science®Google Scholar Moosavi , S.M. , Chidambaram , A. , Talirz , L. et al. ( 2019 ). Capturing chemical intuition in synthesis of metal–organic frameworks . Nat. Commun. 10 : 539 . 10.1038/s41467-019-08483-9 CASPubMedWeb of Science®Google Scholar Xie , Y. , Zhang , C. , Hu , X. et al. ( 2020 ). Machine learning assisted synthesis of metal–organic nanocapsules . J. Am. Chem. Soc. 142 : 1475 – 1481 . 10.1021/jacs.9b11569 CASPubMedWeb of Science®Google Scholar Loewenstein , W. ( 1954 ). The distribution of aluminum in the tetrahedra of silicates and aluminates . Am. Miner. 39 : 92 – 96 . CASWeb of Science®Google Scholar Fletcher , R.E. , Ling , S. , and Slater , B. ( 2017 ). Violations of Löwenstein's rule in zeolites . Chem. Sci. 8 : 7483 – 7491 . 10.1039/C7SC02531A CASPubMedWeb of Science®Google Scholar Van Santen , R.A. ( 1984 ). The Ostwald step rule . J. Phys. Chem. 88 : 5768 – 5769 . 10.1021/j150668a002 CASWeb of Science®Google Scholar Navrotsky , A. , Trofymluk , O. , and Levchenko , A.A. ( 2009 ). Thermochemistry of microporous and mesoporous materials . Chem. Rev. 109 : 3885 – 3902 . 10.1021/cr800495t CASPubMedWeb of Science®Google Scholar Itabashi , K. , Kamimura , Y. , Iyoki , K. et al. ( 2012 ). Hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent . J. Am. Chem. Soc. 134 : 11542 – 11549 . 10.1021/ja3022335 CASPubMedWeb of Science®Google Scholar Guo , P. , Shin , J. , Greenaway , A.G. et al. ( 2015 ). A zeolite family with expanding structural complexity and embedded isoreticular structures . Nature 524 : 74 – 78 . 10.1038/nature14575 CASPubMedWeb of Science®Google Scholar Chaikittisilp , W. and Okubo , T. ( 2021 ). No more trial and error for zeolites . Science 374 : 257 – 258 . 10.1126/science.abm0089 CASPubMedWeb of Science®Google Scholar Blondel , V.D. , Guillaume , J.-L. , Lambiotte , R. et al. ( 2008 ). Fast unfolding of communities in large networks . J. Stat. Mech. Theory Exp. 2008 : P10008 . 10.1088/1742-5468/2008/10/P10008 Web of Science®Google Scholar Schieber , T.A. , Carpi , L. , Diaz-Guilera , A. et al. ( 2016 ). Quantification of network structural dissimilarities . Nat. Commun. 8 : 13928 . 10.1038/ncomms13928 Web of Science®Google Scholar Xu , L. , Choudhary , M.K. , Muraoka , K. et al. ( 2019 ). Bridging the gap between structurally distinct 2D lamellar zeolitic precursors through a 3D germanosilicate intermediate . Angew. Chem. Int. Ed. 58 : 14529 – 14533 . 10.1002/anie.201907857 CASPubMedWeb of Science®Google Scholar Schwalbe-Koda , D. , Jensen , Z. et al. ( 2019 ). Graph similarity drives zeolite diffusionless transformations and intergrowth . Nat. Mater. 18 : 1177 – 1181 . 10.1038/s41563-019-0486-1 CASPubMedWeb of Science®Google Scholar Jakobsen , J.C. , Gluud , C. , Wetterslev , J. et al. ( 2017 ). When and how should multiple imputation be used for handling missing data in randomised clinical trials: a practical guide with flowcharts . BMC Med. Res. Methodol. 17 : 162 . 10.1186/s12874-017-0442-1 PubMedWeb of Science®Google Scholar Schmitt , P. , Mandel , J. , and Guedj , M. ( 2015 ). A comparison of six methods for missing data imputation . J. Biomet. Biostat. 6 : 1000224 . Google Scholar Stekhoven , D.J. and Bühlmann , P. ( 2012 ). MissForest: non-parametric missing value imputation for mixed-type data . Bioinformatics 28 : 112 – 118 . 10.1093/bioinformatics/btr597 CASPubMedWeb of Science®Google Scholar Zhang , X. , Yan , C. , Gao , C. et al. ( 2020 ). Predicting missing values in medical data via XGBoost regression . J. Healthc. Inform. Res. 4 : 383 – 394 . 10.1007/s41666-020-00077-1 PubMedGoogle Scholar Xia , W. , Hou , Z. , Tang , J. et al. ( 2022 ). Materials informatics-guided superior electrocatalyst: a case of pyrolysis-free single-atom coordinated with N-graphene nanomesh . Nano Energy 94 : 106868 . 10.1016/j.nanoen.2021.106868 CASWeb of Science®Google Scholar Dai , L. , Xue , Y. , Qu , L. et al. ( 2015 ). Metal-free catalysts for oxygen reduction reaction . Chem. Rev. 115 : 4823 – 4892 . 10.1021/cr5003563 CASPubMedWeb of Science®Google Scholar Gewirth , A.A. , Varnell , J.A. , and Diascro , A.M. ( 2018 ). Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems . Chem. Rev. 118 : 2313 – 2339 . 10.1021/acs.chemrev.7b00335 CASPubMedWeb of Science®Google Scholar Xia , W. , Tang , J. , Li , J. et al. ( 2019 ). Defect-rich graphene nanomesh produced by thermal exfoliation of metal–organic frameworks for the oxygen reduction reaction . Angew. Chem. Int. Ed. 58 : 13354 – 13359 . 10.1002/anie.201906870 CASPubMedWeb of Science®Google Scholar Heltona , J.C. and Davis , F.J. ( 2003 ). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems . Reliab. Eng. Syst. Saf. 81 : 23 – 69 . 10.1016/S0951-8320(03)00058-9 Web of Science®Google Scholar Pruksawan , S. , Lambard , G. , Samitsu , S. et al. ( 2019 ). Prediction and optimization of epoxy adhesive strength from a small dataset through active learning . Sci. Technol. Adv. Mater. 20 : 1010 – 1021 . 10.1080/14686996.2019.1673670 CASPubMedWeb of Science®Google Scholar Harada , M. , Takeda , H. , Suzuki , S. et al. ( 2020 ). Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries . J. Mater. Chem. A 8 : 15103 – 15109 . 10.1039/D0TA04441E CASWeb of Science®Google Scholar Lambard , G. , Sasaki , T.T. , Sodeyama , K. et al. ( 2022 ). Optimization of direct extrusion process for Nd-Fe-B magnets using active learning assisted by machine learning and Bayesian optimization . Scr. Mater. 209 : 114341 . 10.1016/j.scriptamat.2021.114341 CASWeb of Science®Google Scholar Nugraha , A.S. , Lambard , G. , Na , J. et al. ( 2020 ). Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: unexpected chemical compositions discovered by Bayesian optimization . J. Mater. Chem. A 8 : 13532 – 13540 . 10.1039/D0TA04096G CASWeb of Science®Google Scholar Zhang , J. and Li , C.M. ( 2012 ). Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems . Chem. Soc. Rev. 41 : 7016 – 7031 . 10.1039/c2cs35210a CASPubMedWeb of Science®Google Scholar Lim , H. , Kani , K. , Henzie , J. et al. ( 2020 ). A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis . Nat. Protoc. 15 : 2980 – 3008 . 10.1038/s41596-020-0359-8 PubMedWeb of Science®Google Scholar Wang , T. , Chutia , A. , Brett , D.J.L. et al. ( 2021 ). Palladium alloys used as electrocatalysts for the oxygen reduction reaction . Energy Environ. Sci. 14 : 2639 – 2669 . 10.1039/D0EE03915B CASWeb of Science®Google Scholar Liu , Y. , Chi , M. , Mazumder , V. et al. ( 2011 ). Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of Methanol . Chem. Mater. 23 : 4199 – 4203 . 10.1021/cm2014785 CASWeb of Science®Google Scholar Zhang , Z. , Wang , Y. , and Wang , X. ( 2011 ). Nanoporous bimetallic Pt–Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid . Nanoscale 3 : 1663 – 1674 . 10.1039/c0nr00830c CASPubMedWeb of Science®Google Scholar Xu , S. , Hou , W. , Jiang , R. et al. ( 2019 ). Regulating locations of active sites: a novel strategy to greatly improve the stability of PtAu electrocatalysts . Chem. Commun. 55 : 13602 – 13605 . 10.1039/C9CC07275F CASPubMedWeb of Science®Google Scholar Packwood , D. ( 2017 ). Bayesian Optimization for Materials Science . Singapore : Springer . 10.1007/978-981-10-6781-5 Google Scholar Zhang , Y. , Gu , Y. , Lin , S. et al. ( 2011 ). One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity . Electrochim. Acta 56 : 8746 – 8751 . 10.1016/j.electacta.2011.07.094 CASWeb of Science®Google Scholar Chen , D. , Luo , L.-M. , Zhang , R.-H. et al. ( 2018 ). Highly monodispersed ternary hollow PtPdAu alloy nanocatalysts with enhanced activity toward methanol oxidation . J. Electroanal. Chem. 812 : 90 – 95 . 10.1016/j.jelechem.2018.01.051 CASWeb of Science®Google Scholar AI‐Guided Design and Property Prediction for Zeolites and Nanoporous Materials ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
开朗世立发布了新的文献求助10
1秒前
1秒前
eggy完成签到,获得积分10
1秒前
柠檬雪宝糖完成签到 ,获得积分20
1秒前
量子星尘发布了新的文献求助10
2秒前
伊森发布了新的文献求助10
2秒前
2秒前
lcyss完成签到,获得积分10
2秒前
2秒前
modesty完成签到,获得积分10
3秒前
刘子傲发布了新的文献求助30
3秒前
3秒前
栗松琛完成签到,获得积分20
4秒前
4秒前
CC完成签到,获得积分10
4秒前
4秒前
李不开你完成签到,获得积分10
5秒前
满满嘟嘟完成签到,获得积分10
6秒前
6秒前
芦泸发布了新的文献求助10
6秒前
Meng完成签到,获得积分10
7秒前
7秒前
7秒前
Hello应助机灵飞珍采纳,获得10
7秒前
Xinzz发布了新的文献求助10
7秒前
qmac发布了新的文献求助10
8秒前
MchemG应助友好的半仙采纳,获得10
8秒前
万能图书馆应助mario采纳,获得10
8秒前
8秒前
zyc1111111完成签到,获得积分10
8秒前
销户完成签到 ,获得积分10
9秒前
9秒前
完美世界应助大恩区采纳,获得20
9秒前
研友_屈不愁完成签到,获得积分10
9秒前
9秒前
开朗世立完成签到,获得积分10
9秒前
麻辣梗儿完成签到,获得积分10
10秒前
鹿友绿完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475