过电位
催化作用
钌
材料科学
纳米颗粒
电化学
分解水
氢
密度泛函理论
制氢
纳米技术
化学工程
光化学
无机化学
化学物理
物理化学
计算化学
化学
光催化
电极
有机化学
工程类
作者
Yang Liu,Jianghua Wu,Yuchen Zhang,Jin Xu,Jianming Li,Xiaoke Xi,Yu Deng,Shuhong Jiao,Zhanwu Lei,Xiyu Li,Ruiguo Cao
标识
DOI:10.1021/acsami.2c20863
摘要
Hydrogen evolution reaction (HER) plays a key role in electrochemical water splitting, which is a sustainable way for hydrogen production. The kinetics of HER is sluggish in neutral media that requires noble metal catalysts to alleviate energy consumption during the HER process. Here, we present a catalyst comprising a ruthenium single atom (Ru1) and nanoparticle (Run) loaded on the nitrogen-doped carbon substrate (Ru1-Run/CN), which exhibits excellent activity and superior durability for neutral HER. Benefiting from the synergistic effect between single atoms and nanoparticles in the Ru1-Run/CN, the catalyst exhibits a very low overpotential down to 32 mV at a current density of 10 mA cm-2 while maintaining excellent stability up to 700 h at a current density of 20 mA cm-2 during the long-term test. Computational calculations reveal that, in the Ru1-Run/CN catalyst, the existence of Ru nanoparticles affects the interactions between Ru single-atom sites and reactants and thus improves the catalytic activity of HER. This work highlights the ensemble effect of electrocatalysts for HER and could shed light on the rational design of efficient catalysts for other multistep electrochemical reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI