Alteration of the central core of a DF-PCIC chromophore to boost the photovoltaic applications of non-fullerene acceptor based organic solar cells

光伏系统 发色团 富勒烯 有机太阳能电池 接受者 芯(光纤) 密度泛函理论 带隙 激子 吸收(声学) 基准集 光化学 原子轨道 吸收光谱法 化学 轨道能级差 分子轨道 材料科学 分子 化学物理 化学工程 计算化学 光电子学 电子 有机化学 物理 光学 工程类 复合材料 电气工程 量子力学 生物 凝聚态物理 聚合物 生态学
作者
Amna Zahoor,N. M. A. Hadia,Sahar Javaid Akram,Rana Farhat Mehmood,Sonia Sadiq,Ahmed Mahmoud Shawky,Naifa S. Alatawi,Asma Ahmed,Javed Iqbal,Rasheed Ahmad Khera
出处
期刊:RSC Advances [The Royal Society of Chemistry]
卷期号:13 (10): 6530-6547
标识
DOI:10.1039/d2ra08091e
摘要

Modifying the central core is a very efficient strategy to boost the performance of non-fullerene acceptors. Herein five non-fullerene acceptors (M1-M5) of A-D-D'-D-A type were designed by substituting the central acceptor core of the reference (A-D-A'-D-A type) with different strongly conjugated and electron donating cores (D') to enhance the photovoltaic attributes of OSCs. All the newly designed molecules were analyzed through quantum mechanical simulations to compute their optoelectronic, geometrical, and photovoltaic parameters and compare them to the reference. Theoretical simulations of all the structures were carried out through different functionals with a carefully selected 6-31G(d,p) basis set. Absorption spectra, charge mobility, dynamics of excitons, distribution pattern of electron density, reorganization energies, transition density matrices, natural transition orbitals and frontier molecular orbitals, respectively of the studied molecules were evaluated at this functional. Among the designed structures in various functionals, M5 showed the most improved optoelectronic properties, such as the lowest band gap (2.18 e V), highest maximum absorption (720 nm), and lowest binding energy (0.46 eV) in chloroform solvent. Although the highest photovoltaic aptitude as acceptors at the interface was perceived to be of M1, its highest band gap and lowest absorption maxima lowered its candidature as the best molecule. Thus, M5 with its lowest electron reorganization energy, highest light harvesting efficiency, and promising open-circuit voltage (better than the reference), amongst other favorable features, outperformed the others. Conclusively, each evaluated property commends the aptness of designed structures to augment the power conversion efficiency (PCE) in the field of optoelectronics in one way or another, which reveals that a central un-fused core having an electron-donating capability with terminal groups being significantly electron withdrawing, is an effective configuration for the attainment of promising optoelectronic parameters, and thus the proposed molecules could be utilized in future NFAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哆唻发布了新的文献求助10
1秒前
解泽星完成签到,获得积分20
1秒前
jsinm-thyroid完成签到 ,获得积分10
2秒前
2秒前
95发布了新的文献求助20
2秒前
2秒前
3秒前
桐桐应助spoon1026采纳,获得10
3秒前
4秒前
Fall完成签到,获得积分10
5秒前
隐形曼青应助zoey采纳,获得10
6秒前
6秒前
BBB发布了新的文献求助10
7秒前
Chb完成签到,获得积分10
7秒前
Yxy完成签到,获得积分10
9秒前
10秒前
10秒前
大侦探皮卡丘完成签到,获得积分10
10秒前
简单的元珊完成签到,获得积分10
10秒前
yuayua发布了新的文献求助10
10秒前
NPC-CBI发布了新的文献求助10
11秒前
粗犷的书包完成签到,获得积分10
12秒前
36456657应助qq采纳,获得10
12秒前
12秒前
14秒前
14秒前
学以致用完成签到,获得积分10
14秒前
ghost发布了新的文献求助10
15秒前
情怀应助冷酷雨泽采纳,获得10
16秒前
16秒前
科研通AI2S应助无语死了采纳,获得10
16秒前
MaoTing完成签到,获得积分10
17秒前
科研通AI2S应助张张呀采纳,获得10
17秒前
zoey发布了新的文献求助10
17秒前
17秒前
17秒前
123shl完成签到,获得积分20
18秒前
温续完成签到,获得积分20
19秒前
玛奇朵完成签到,获得积分10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3246514
求助须知:如何正确求助?哪些是违规求助? 2889855
关于积分的说明 8260762
捐赠科研通 2558364
什么是DOI,文献DOI怎么找? 1387158
科研通“疑难数据库(出版商)”最低求助积分说明 650485
邀请新用户注册赠送积分活动 626926