Alteration of the central core of a DF-PCIC chromophore to boost the photovoltaic applications of non-fullerene acceptor based organic solar cells

光伏系统 发色团 富勒烯 有机太阳能电池 接受者 芯(光纤) 密度泛函理论 带隙 激子 吸收(声学) 基准集 光化学 原子轨道 吸收光谱法 化学 轨道能级差 分子轨道 材料科学 分子 化学物理 化学工程 计算化学 光电子学 电子 有机化学 物理 光学 工程类 复合材料 电气工程 量子力学 生物 凝聚态物理 聚合物 生态学
作者
Amna Zahoor,N. M. A. Hadia,Sahar Javaid Akram,Rana Farhat Mehmood,Sonia Sadiq,Ahmed Mahmoud Shawky,Naifa S. Alatawi,Asma Ahmed,Javed Iqbal,Rasheed Ahmad Khera
出处
期刊:RSC Advances [The Royal Society of Chemistry]
卷期号:13 (10): 6530-6547
标识
DOI:10.1039/d2ra08091e
摘要

Modifying the central core is a very efficient strategy to boost the performance of non-fullerene acceptors. Herein five non-fullerene acceptors (M1-M5) of A-D-D'-D-A type were designed by substituting the central acceptor core of the reference (A-D-A'-D-A type) with different strongly conjugated and electron donating cores (D') to enhance the photovoltaic attributes of OSCs. All the newly designed molecules were analyzed through quantum mechanical simulations to compute their optoelectronic, geometrical, and photovoltaic parameters and compare them to the reference. Theoretical simulations of all the structures were carried out through different functionals with a carefully selected 6-31G(d,p) basis set. Absorption spectra, charge mobility, dynamics of excitons, distribution pattern of electron density, reorganization energies, transition density matrices, natural transition orbitals and frontier molecular orbitals, respectively of the studied molecules were evaluated at this functional. Among the designed structures in various functionals, M5 showed the most improved optoelectronic properties, such as the lowest band gap (2.18 e V), highest maximum absorption (720 nm), and lowest binding energy (0.46 eV) in chloroform solvent. Although the highest photovoltaic aptitude as acceptors at the interface was perceived to be of M1, its highest band gap and lowest absorption maxima lowered its candidature as the best molecule. Thus, M5 with its lowest electron reorganization energy, highest light harvesting efficiency, and promising open-circuit voltage (better than the reference), amongst other favorable features, outperformed the others. Conclusively, each evaluated property commends the aptness of designed structures to augment the power conversion efficiency (PCE) in the field of optoelectronics in one way or another, which reveals that a central un-fused core having an electron-donating capability with terminal groups being significantly electron withdrawing, is an effective configuration for the attainment of promising optoelectronic parameters, and thus the proposed molecules could be utilized in future NFAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪你巴完成签到,获得积分10
刚刚
小樊啦完成签到 ,获得积分10
2秒前
2秒前
牛大锤完成签到,获得积分10
2秒前
所所应助春风明月采纳,获得10
3秒前
七月完成签到,获得积分20
4秒前
4秒前
嘿哈哈完成签到,获得积分10
4秒前
胡俊豪发布了新的文献求助10
5秒前
5秒前
科研通AI6应助Elite采纳,获得10
5秒前
共享精神应助qiii采纳,获得10
5秒前
6秒前
向北游完成签到,获得积分10
6秒前
6秒前
华仔应助年轻海云采纳,获得10
6秒前
josieyu1999完成签到,获得积分10
8秒前
dc发布了新的文献求助10
9秒前
mmxr完成签到,获得积分20
9秒前
法外狂徒完成签到,获得积分10
9秒前
哒哒哒发布了新的文献求助10
9秒前
万1发布了新的文献求助10
10秒前
科研通AI6应助fzzf采纳,获得10
10秒前
雪碧不是碳酸完成签到,获得积分10
11秒前
11秒前
漫漫发布了新的文献求助10
11秒前
在水一方应助内向的雨泽采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
清脆惜寒完成签到,获得积分10
12秒前
学术蟑螂完成签到,获得积分20
12秒前
郝誉发布了新的文献求助10
12秒前
酷波er应助Y12采纳,获得10
14秒前
NexusExplorer应助321采纳,获得10
14秒前
田一点发布了新的文献求助10
14秒前
sakiecon完成签到,获得积分10
14秒前
在水一方应助万1采纳,获得10
15秒前
Return应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277