Charge Trapping and Emission Properties in CAAC-IGZO Transistor: A First-Principles Calculations

材料科学 费米能级 电介质 阈值电压 晶体管 光电子学 栅极电介质 电子 原子物理学 电压 电气工程 物理 量子力学 工程类
作者
Ziqi Wang,Nianduan Lu,Jiawei Wang,Di Geng,Lingfei Wang,Guanhua Yang
出处
期刊:Materials [MDPI AG]
卷期号:16 (6): 2282-2282 被引量:4
标识
DOI:10.3390/ma16062282
摘要

The c-axis aligned crystalline indium-gallium-zinc-oxide field-effect transistor (CAAC-IGZO FET), exhibiting an extremely low off-state leakage current (~10−22 A/μm), has promised to be an ideal candidate for Dynamic Random Access Memory (DRAM) applications. However, the instabilities leaded by the drift of the threshold voltage in various stress seriously affect the device application. To better develop high performance CAAC-IGZO FET for DRAM applications, it’s essential to uncover the deep physical process of charge transport mechanism in CAAC-IGZO FET. In this work, by combining the first-principles calculations and nonradiative multiphonon theory, the charge trapping and emission properties in CAAC-IGZO FET have been systematically investigated. It is found that under positive bias stress, hydrogen interstitial in Al2O3 gate dielectric is probable effective electron trap center, which has the transition level (ε (+1/−1) = 0.52 eV) above Fermi level. But it has a high capture barrier about 1.4 eV and low capture rate. Under negative bias stress, oxygen vacancy in Al2O3 gate dielectric and CAAC-IGZO active layer are probable effective electron emission centers whose transition level ε (+2/0) distributed at −0.73~−0.98 eV and 0.69 eV below Fermi level. They have a relatively low emission barrier of about 0.5 eV and 0.25 eV and high emission rate. To overcome the instability in CAAC-IGZO FET, some approaches can be taken to control the hydrogen concentration in Al2O3 dielectric layer and the concentration of the oxygen vacancy. This work can help to understand the mechanisms of instability of CAAC-IGZO transistor caused by the charge capture/emission process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助赵十一采纳,获得10
刚刚
HY发布了新的文献求助30
刚刚
ly发布了新的文献求助10
1秒前
1秒前
36456657应助kk采纳,获得10
1秒前
yuxuan发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
乐乐应助Surge采纳,获得10
3秒前
3秒前
CipherSage应助水123采纳,获得10
3秒前
随便起个吧完成签到 ,获得积分10
3秒前
May发布了新的文献求助10
3秒前
夜寻发布了新的文献求助10
4秒前
1111111完成签到,获得积分10
4秒前
4秒前
夏墨发布了新的文献求助10
4秒前
4秒前
4秒前
有魅力的雨梅完成签到,获得积分10
5秒前
Ava应助龙行天下采纳,获得10
5秒前
策略完成签到,获得积分10
5秒前
Hhh完成签到 ,获得积分10
5秒前
脆脆鲨发布了新的文献求助10
5秒前
XX发布了新的文献求助10
5秒前
6秒前
rsy完成签到,获得积分10
6秒前
6秒前
7秒前
liao应助托勒兰德安德烈采纳,获得10
7秒前
7秒前
8秒前
Surge完成签到,获得积分10
8秒前
聪明邪欢完成签到,获得积分10
8秒前
Linjiannan发布了新的文献求助10
8秒前
灌水大王发布了新的文献求助10
8秒前
8秒前
8秒前
JamesPei应助铛铛铛采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386