Charge Trapping and Emission Properties in CAAC-IGZO Transistor: A First-Principles Calculations

材料科学 费米能级 电介质 阈值电压 晶体管 光电子学 栅极电介质 电子 原子物理学 电压 电气工程 物理 量子力学 工程类
作者
Ziqi Wang,Nianduan Lu,Jiawei Wang,Di Geng,Lingfei Wang,Guanhua Yang
出处
期刊:Materials [MDPI AG]
卷期号:16 (6): 2282-2282 被引量:4
标识
DOI:10.3390/ma16062282
摘要

The c-axis aligned crystalline indium-gallium-zinc-oxide field-effect transistor (CAAC-IGZO FET), exhibiting an extremely low off-state leakage current (~10−22 A/μm), has promised to be an ideal candidate for Dynamic Random Access Memory (DRAM) applications. However, the instabilities leaded by the drift of the threshold voltage in various stress seriously affect the device application. To better develop high performance CAAC-IGZO FET for DRAM applications, it’s essential to uncover the deep physical process of charge transport mechanism in CAAC-IGZO FET. In this work, by combining the first-principles calculations and nonradiative multiphonon theory, the charge trapping and emission properties in CAAC-IGZO FET have been systematically investigated. It is found that under positive bias stress, hydrogen interstitial in Al2O3 gate dielectric is probable effective electron trap center, which has the transition level (ε (+1/−1) = 0.52 eV) above Fermi level. But it has a high capture barrier about 1.4 eV and low capture rate. Under negative bias stress, oxygen vacancy in Al2O3 gate dielectric and CAAC-IGZO active layer are probable effective electron emission centers whose transition level ε (+2/0) distributed at −0.73~−0.98 eV and 0.69 eV below Fermi level. They have a relatively low emission barrier of about 0.5 eV and 0.25 eV and high emission rate. To overcome the instability in CAAC-IGZO FET, some approaches can be taken to control the hydrogen concentration in Al2O3 dielectric layer and the concentration of the oxygen vacancy. This work can help to understand the mechanisms of instability of CAAC-IGZO transistor caused by the charge capture/emission process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
滟滟完成签到,获得积分10
刚刚
Wjc完成签到,获得积分20
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
脑洞疼应助lunhui6453采纳,获得10
2秒前
小黄完成签到 ,获得积分10
4秒前
mochi发布了新的文献求助10
4秒前
TWOTP完成签到,获得积分10
4秒前
QDF发布了新的文献求助10
4秒前
丘比特应助在南方看北方采纳,获得10
4秒前
5秒前
5秒前
DryDry完成签到,获得积分10
7秒前
崔小乐给崔小乐的求助进行了留言
7秒前
7秒前
7秒前
别理我完成签到,获得积分20
8秒前
暮霭沉沉应助鱿鱼采纳,获得50
8秒前
Kelly完成签到,获得积分10
8秒前
yuon完成签到,获得积分10
8秒前
9秒前
9秒前
伞下铭发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
欣xin完成签到,获得积分20
12秒前
螃蟹完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
@@@发布了新的文献求助10
13秒前
撒旦撒完成签到,获得积分10
13秒前
13秒前
打打应助江林林采纳,获得10
14秒前
14秒前
vicky完成签到 ,获得积分10
14秒前
搜集达人应助dd采纳,获得10
14秒前
HWX完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952