Efficient ciprofloxacin removal over Z-scheme ZIF-67/V-BiOIO3 heterojunctions: Insight into synergistic effect between adsorption and photocatalysis

吸附 光催化 朗缪尔吸附模型 降级(电信) 化学 异质结 咪唑酯 化学工程 纳米技术 材料科学 无机化学 有机化学 催化作用 光电子学 工程类 计算机科学 电信
作者
Linghui Meng,Chen Zhao,Tianyu Wang,Hong‐Yu Chu,Chong-Chen Wang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:313: 123511-123511 被引量:41
标识
DOI:10.1016/j.seppur.2023.123511
摘要

To achieve remarkable synergy between adsorption and photocatalysis for the elimination of ciprofloxacin (CIP), ZIF-67/V-BiOIO3 (denoted as ZxVy) heterojunctions were successfully fabricated via the in-situ solvothermal method. In the as-prepared ZxVy heterojunctions, ZIF-67 with rhombic dodecahedron structure could adsorb and enrich CIP effectively due to its large specific area (1339.0 m2/g), π-π interactions, and high coordinating ability of Co2+ cations. The adsorption isotherm and kinetics of CIP on ZxVy heterojunctions can be depicted utilizing the Langmuir and pseudo-second-order models. The elimination of CIP over the ZxVy heterojunctions was studied by a synergy of adsorption and photocatalytic degradation process. And the optimum Z10V5 sample possessed the highest removal efficiency of 98.4%. Being compared with pristine ZIF-67 and V-BiOIO3, all the ZxVy heterojunctions exhibited superior photocatalytic performances for CIP degradation under illumination by visible light. The increased photocatalytic activity was primarily attributable to abundant surface-active sites, strong optical adsorption ability as well as the formed Z-scheme heterojunction between ZIF-67 and V-BiOIO3, which contributed to the acceleration of electron-hole pair separation and simultaneously retain high redox capacities. This work might provide some guidance of rational construction of MOFs-based Z-scheme heterojunctions for wastewater treatment via strong synergy between adsorption and photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ayu发布了新的文献求助10
1秒前
Danqing完成签到,获得积分10
1秒前
1秒前
橘子完成签到,获得积分10
1秒前
无花果应助阳光以筠采纳,获得10
2秒前
奕奕发布了新的文献求助10
2秒前
2秒前
小超人到海底捉虫完成签到,获得积分10
3秒前
NexusExplorer应助荧惑采纳,获得10
3秒前
TTTHANKS发布了新的文献求助10
4秒前
田様应助夕荀采纳,获得10
5秒前
5秒前
6秒前
6秒前
8秒前
10秒前
大个应助清爽灰狼采纳,获得10
10秒前
10秒前
天才小熊猫完成签到,获得积分10
11秒前
希望天下0贩的0应助YLing采纳,获得10
11秒前
huhu发布了新的文献求助10
11秒前
hanatae完成签到,获得积分10
12秒前
firewater发布了新的文献求助10
12秒前
酷波er应助wjx采纳,获得10
12秒前
13秒前
15秒前
上官若男应助兜里没糖采纳,获得10
15秒前
15秒前
我与论文不共戴天完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
值班室禁止学习完成签到,获得积分10
17秒前
奕初阳发布了新的文献求助10
18秒前
情怀应助一步一步采纳,获得10
18秒前
18秒前
夕荀发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721