Improved Li‐Ion Conduction and (Electro)Chemical Stability at Garnet‐Polymer Interface through Metal‐Nitrogen Bonding

材料科学 电解质 电导率 复合数 离子电导率 聚合物 化学工程 离子 金属 阴极 涂层 快离子导体 吸附 复合材料 电极 物理化学 有机化学 冶金 化学 工程类
作者
Yanan Xu,Kai Wang,Xu‐Dong Zhang,Yibo Ma,Qifan Peng,Yue Gong,Sha Yi,Hua Guo,Xiong Zhang,Xianzhong Sun,Hongcai Gao,Sen Xin,Yu‐Guo Guo,Yanwei Ma
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (14) 被引量:33
标识
DOI:10.1002/aenm.202204377
摘要

Abstract Organic‐inorganic composite solid electrolytes consisting of garnet fillers dispersed in polyvinylidene difluoride (PVDF) frameworks have shown promise to enable high‐energy solid‐state Li‐metal batteries. However, the air‐sensitive garnets easily form poorly‐conductive residues, which hinders fast Li‐ion exchange at the garnet‐polymer interface and results in low ionic conductivity. The highly alkaline residues trigger instant dehydrofluorination of PVDF to form unsaturated CC bonds, which are unstable against high‐voltage cathode materials. Here it is shown that, by applying a 10‐nm polydopamine coating on the residue‐removed garnet surface, the modified garnet filler becomes air‐stable and does not generate alkaline residues, so PVDF remains an intact structure. Surface characterizations reveal substantial metal‐nitrogen bonding between the La atoms of garnet and the amino groups of polydopamine, which can invite stronger adsorption of Li ions at the heterointerface. A new interparticle Li‐ion conduction mechanism is disclosed for the composite electrolyte, in which Li ions preferably migrate through the garnet‐polydopamine interface, forming an efficient ion‐percolation network. As a result, the composite electrolyte demonstrates an effective room‐temperature Li + conductivity of 1.52 × 10 –4 S cm –1 and a high cutoff voltage of up to 4.7 V versus Li + /Li to support stable operation of all‐solid‐state Li‐LiCoO 2 batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
逐风给逐风的求助进行了留言
4秒前
科研通AI5应助灌饼采纳,获得30
4秒前
Owen应助Zzzzzzzzzzz采纳,获得10
5秒前
6秒前
7秒前
巫马秋寒应助笑点低可乐采纳,获得10
7秒前
xuex1完成签到,获得积分10
7秒前
情怀应助阳光的雁山采纳,获得10
9秒前
斯文败类应助jy采纳,获得10
9秒前
9秒前
日月轮回发布了新的文献求助10
10秒前
36456657应助木香采纳,获得10
11秒前
无花果应助ns采纳,获得30
11秒前
刘铭晨完成签到,获得积分10
11秒前
12秒前
YY发布了新的文献求助10
12秒前
Rrr发布了新的文献求助10
13秒前
学术蠕虫发布了新的文献求助10
13秒前
13秒前
miumiuka完成签到,获得积分10
14秒前
个性的薯片应助lyt采纳,获得20
16秒前
sweetbearm应助寒涛先生采纳,获得10
17秒前
wanci应助YY采纳,获得10
18秒前
18秒前
19秒前
19秒前
20秒前
HC完成签到 ,获得积分10
21秒前
姚姚的赵赵完成签到,获得积分10
21秒前
JamesPei应助大豪子采纳,获得30
22秒前
jy发布了新的文献求助10
22秒前
22秒前
陆靖易发布了新的文献求助10
22秒前
LQW完成签到,获得积分20
23秒前
24秒前
plant完成签到,获得积分10
24秒前
lyt完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808