Single-Cell Multimodal Prediction via Transformers

杠杆(统计) 模式 计算机科学 人工智能 机器学习 变压器 瓶颈 水准点(测量) 数据挖掘 电压 社会学 地理 嵌入式系统 大地测量学 物理 量子力学 社会科学
作者
Wenzhuo Tang,Hongzhi Wen,Renming Liu,Jiayuan Ding,Wei Jin,Yuying Xie,Hui Liu,Jiliang Tang
标识
DOI:10.1145/3583780.3615061
摘要

The recent development of multimodal single-cell technology has made the possibility of acquiring multiple omics data from individual cells, thereby enabling a deeper understanding of cellular states and dynamics. Nevertheless, the proliferation of multimodal single-cell data also introduces tremendous challenges in modeling the complex interactions among different modalities. The recently advanced methods focus on constructing static interaction graphs and applying graph neural networks (GNNs) to learn from multimodal data. However, such static graphs can be suboptimal as they do not take advantage of the downstream task information; meanwhile GNNs also have some inherent limitations when deeply stacking GNN layers. To tackle these issues, in this work, we investigate how to leverage transformers for multimodal single-cell data in an end-to-end manner while exploiting downstream task information. In particular, we propose a scMoFormer framework which can readily incorporate external domain knowledge and model the interactions within each modality and cross modalities. Extensive experiments demonstrate that scMoFormer achieves superior performance on various benchmark datasets. Remarkably, scMoFormer won a Kaggle silver medal with the rank of 24/1221 (Top 2%) without ensemble in a NeurIPS 2022 competition1. Our implementation is publicly available at Github2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定芯发布了新的文献求助10
刚刚
李爱国应助TheAchilles采纳,获得30
1秒前
1秒前
1秒前
小鱼发布了新的文献求助10
2秒前
45465465456发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
BowieHuang应助梁权伍采纳,获得10
3秒前
4秒前
wulalala发布了新的文献求助30
4秒前
蒲公英完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
英俊的铭应助reck采纳,获得10
5秒前
5秒前
迅速的易巧完成签到 ,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
暮商零七应助科研通管家采纳,获得10
5秒前
ting应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得30
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791