Sugar alcohol slurries in which sugar alcohols are dispersed in aqueous sugar alcohol solutions are expected to be useful as latent heat storage materials. Sugar alcohol slurries can maintain fluidity while using the enthalpy change of the solution, which is associated with the dissolution or deposition of sugar alcohols. In this study, the apparent specific heats of sugar alcohol slurries containing two or more types of sugar alcohols were measured experimentally. Sugar alcohols dissolved in the aqueous sugar alcohol solution on an individual basis, even when two or more types of sugar alcohols were dispersed in the slurry. Moreover, the apparent specific heats of sugar alcohol slurries increased at temperatures near the saturation temperatures of each dispersed sugar alcohol. An estimation equation for the apparent specific heat of the multi-component sugar alcohol slurry was developed by considering the enthalpy difference between the sugar alcohols in their liquid and solid states. The results of calculations using this estimation equation agreed reasonably well with the measured apparent specific heat. The optimal combination and combining ratio of sugar alcohols was proposed to maximize the amount of the heat storage of multi-component sugar alcohol slurries based on the calculations using the estimation equation.