吸附
金属有机骨架
选择性
微型多孔材料
连接器
背景(考古学)
表面改性
选择性吸附
化学工程
材料科学
气体分离
化学
组合化学
有机化学
催化作用
膜
计算机科学
古生物学
工程类
操作系统
生物
生物化学
作者
Mei‐Hui Yu,Han Fang,Hongliang Huang,Meng Zhao,Zheng‐Yu Su,Hong‐Xiang Nie,Ze Chang,Tong‐Liang Hu
出处
期刊:Small
[Wiley]
日期:2023-03-04
卷期号:19 (22)
被引量:23
标识
DOI:10.1002/smll.202300821
摘要
The pore dimension and surface property directly dictate the transport of guests, endowing diverse gas selective adsorptions to porous materials. It is highly relevant to construct metal-organic frameworks (MOFs) with designable functional groups that can achieve feasible pore regulation to improve their separation performances. However, the role of functionalization in different positions or degrees within framework on the separation of light hydrocarbon has rarely been emphasized. In this context, four isoreticular MOFs (TKL-104-107) bearing dissimilar fluorination are rationally screened out and afforded intriguing differences in the adsorption behavior of C2 H6 and C2 H4 . Ortho-fluoridation of carboxyl allows TKL-105-107 to exhibit enhanced structural stabilities, impressive C2 H6 adsorption capacities (>125 cm3 g-1 ) and desirable inverse selectivities (C2 H6 over C2 H4 ). The more modified ortho-fluorine group and meta-fluorine group of carboxyl have improved the C2 H6 /C2 H4 selectivity and adsorption capacity, respectively, and the C2 H6 /C2 H4 separation potential can be well optimized via linker fine-fluorination. Meanwhile, dynamic breakthrough experiments proved that TKL-105-107 can be used as highly efficient C2 H6 -selective adsorbents for C2 H4 purification. This work highlights that the purposeful functionalization of pore surfaces facilitates the assembly of highly efficient MOF adsorbents for specific gas separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI