A collaborative cuckoo search algorithm with modified operation mode

计算机科学 布谷鸟搜索 引导式本地搜索 局部搜索(优化) 迭代深化深度优先搜索 新颖性 搜索算法 模式(计算机接口) 算法 迭代局部搜索 数学优化 波束堆栈搜索 最佳优先搜索 波束搜索 粒子群优化 数学 哲学 神学 操作系统
作者
Qiangda Yang,H. Z. Huang,Jie Zhang,Hongbo Gao,Peng Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 106006-106006 被引量:6
标识
DOI:10.1016/j.engappai.2023.106006
摘要

Cuckoo search (CS) is a nature-inspired algorithm that has shown its favorable potential for solving complex optimization problems. Nevertheless, there is a lack of effective information sharing between individuals in CS, which would doubtless limit its achievable performance. While several CS variants have considered this issue, they commonly strengthen the information sharing in just one of the two search parts (i.e., global and local search parts). In this paper, to further address the above issue and to get a more rational allocation of the workloads of global search and local search, a new CS variant called collaborative CS with modified operation mode (CCSMO) is proposed. One novelty is that a collaborative mechanism is presented to strengthen the information sharing and collaboration between individuals in both search parts, and correspondingly, two new iterative strategies are introduced respectively for global search and local search. Another novelty is that the conventional operation mode adopted by almost all existing CS-based algorithms is modified for more rationally allocating the workloads of global search and local search. To validate the performance of CCSMO, extensive experiments and comparisons between CCSMO and 17 state-of-the-art algorithms are made on two popular test suites from IEEE Conference on Evolutionary Computation (CEC). Besides, the algorithm is also applied to solve three engineering design problems and one large-scale combined heat and power economic dispatch problem. The results demonstrate that CCSMO can offer highly competitive performance. Additionally, the time complexity, search behavior, modification effectiveness, and parameter sensitivity of CCSMO are also evaluated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
大马猴发布了新的文献求助10
4秒前
任瑶发布了新的文献求助10
6秒前
脸就是黑啊完成签到,获得积分10
6秒前
夏虫语冰完成签到,获得积分20
6秒前
CYL07发布了新的文献求助10
7秒前
大个应助曦臐采纳,获得10
8秒前
cadcae发布了新的文献求助30
8秒前
首席或雪月完成签到,获得积分10
10秒前
Aurora发布了新的文献求助10
10秒前
科研通AI5应助van采纳,获得10
10秒前
ThunderChen发布了新的文献求助10
11秒前
12秒前
3565完成签到,获得积分10
12秒前
13秒前
坚强的夏瑶完成签到,获得积分20
15秒前
追寻的城完成签到,获得积分20
16秒前
EyziXu完成签到,获得积分20
16秒前
Emily发布了新的文献求助10
19秒前
vikoer发布了新的文献求助10
19秒前
19秒前
GuMingyang发布了新的文献求助10
20秒前
23秒前
Zhou完成签到,获得积分10
29秒前
科研通AI5应助淡定小懒猪采纳,获得10
34秒前
酷波er应助Wang采纳,获得10
37秒前
zhuyan完成签到,获得积分10
40秒前
领导范儿应助科研通管家采纳,获得10
40秒前
41秒前
烟花应助科研通管家采纳,获得10
41秒前
Jasper应助科研通管家采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
41秒前
NexusExplorer应助科研通管家采纳,获得30
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
顾矜应助科研通管家采纳,获得10
41秒前
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669998
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775372
捐赠科研通 2937577
什么是DOI,文献DOI怎么找? 1609384
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792